Skip to main content

Reliable Hierarchical Clustering with the Self-organizing Map

  • Conference paper
Advances in Intelligent Data Analysis VI (IDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3646))

Included in the following conference series:

Abstract

Clustering problems arise in various domains of science and engineering. A large number of methods have been developed to date. Kohonen self-organizing map (SOM) is a popular tool that maps a high-dimensional space onto a small number of dimensions by placing similar elements close together, forming clusters. Cluster analysis is often left to the user. In this paper we present a method and a set of tools to perform unsupervised SOM cluster analysis, determine cluster confidence and visualize the result as a tree facilitating comparison with existing hierarchical classifiers. We also introduce a distance measure for cluster trees that allows to select a SOM with the most confident clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  2. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK: the self-organizing map program package, 2nd edn. (1995)

    Google Scholar 

  3. Himberg, J.: A SOM based cluster visualization and its application for false coloring. In: IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), vol. 3, pp. 3587–3592 (2000)

    Google Scholar 

  4. Margush, T., McMorris, F.R.: Consensus n-trees. Bulletin of Mathematical Biology 43, 239–244 (1981)

    MATH  MathSciNet  Google Scholar 

  5. Adams, E.N.: N-trees as nestings: complexity, similarity, and consensus. Journal of Classification 3, 299–317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  7. Dittenbach, M., Rauber, A., Merkl, D.: Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing 48, 199–216 (2002)

    Article  MATH  Google Scholar 

  8. Dopazo, J., Carazo, J.M.: Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution 44, 226–233 (1997)

    Article  Google Scholar 

  9. Myers, E.W., Miller, W.: Optimal alignments in linear space. In: Computer Applications in Biosciences (CABIOS), vol. 4, pp. 11–17 (1988)

    Google Scholar 

  10. Waterman, M.S.: Parametric and ensemble sequence alignment algorithms. Bulletin of Mathematical Biology 56(4), 743–767 (1994)

    MATH  Google Scholar 

  11. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. In: Proceedings of the National Academy of Sciences, USA, vol. 89, pp. 10915–10919 (1992)

    Google Scholar 

  12. Sjölander, K.: Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics 20(2), 170–179 (2004)

    Article  Google Scholar 

  13. Horn, F., Bettler, E., Oliveira, L., Campagne, F., Cohen, F.E., Vriend, G.: GPCRDB information system for G protein-coupled receptors. Nucleic Acids Research 31(1), 294–297 (2003)

    Article  Google Scholar 

  14. Thompson, J., Higgins, D., Gibson, T.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680 (1994)

    Article  Google Scholar 

  15. Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices from protein sequences. Computer Applications in Biosciences (CABIOS) 8, 275–282 (1992)

    Google Scholar 

  16. Felsenstein, J.: PHYLIP – phylogeny inference package (version 3.2). Cladistics 5, 164–166 (1989)

    Google Scholar 

  17. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  18. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Article  Google Scholar 

  19. Samsonova, E.V., Bäck, T., Beukers, M.W., IJzerman, A.P., Kok, J.N.: Combining and comparing cluster methods in a receptor database. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 341–351. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Samsonova, E.V., Kok, J.N., IJzerman, A.P.: TreeSOM: cluster analysis in the self-organizing map. In: Proceedings of the 5th Workshop On Self-Organizing Maps (2005) (in press)

    Google Scholar 

  21. Hanke, J., Reich, J.G.: Kohonen map as a visualization tool for the analysis of protein sequences: multiple alignments, domains and segments of secondary structures. Computer Applications in Biosciences (CABIOS) 12(6), 447–454 (1996)

    Google Scholar 

  22. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945–952 (2002)

    Article  Google Scholar 

  23. Fischer, I.: Similarity-based neural networks for applications in computational molecular biology. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 208–218. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  25. Kraaijveld, M.A., Mao, J., Jain, A.K.: A non-linear projection method based on Kohonen’s topology preserving maps. In: Proceedings of the 11th International Conference on Pattern Recognition (11ICPR), pp. 41–45. IEEE Comput. Soc. Press, Los Alamitos (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samsonova, E.V., Bäck, T., Kok, J.N., IJzerman, A.P. (2005). Reliable Hierarchical Clustering with the Self-organizing Map. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_35

Download citation

  • DOI: https://doi.org/10.1007/11552253_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28795-7

  • Online ISBN: 978-3-540-31926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics