Abstract
Indexing hyperspectral images is a special case of content based image retrieval (CBIR) systems, with the added complexity of the high dimensionality of the pixels. We propose the use of endmembers as the hyperspectral image characterization. We thus define a similarity measure between hyperspectral images based on these image endmembers. The endmembers must be induced from the image data in order to automate the process. For this induction we use Associative Morphological Memories (AMM) and the notion of Morphological Independence.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pat. Anal. Mach. Intel. 22(12), 1349–1380 (2000)
Landgrebe, D.A.: Signal Theory Methods in Multispectral Remote Sensing. John Wiley & Sons, Hoboken (2003)
Alber, I.E., Xiong, Z., Yeager, N., Farber, M., Pottenger, W.M.: Fast retrieval of multiand hyperspectral images using relevance feedback. In: Proc. Geosci. Rem. Sens. Symp., 2001, IGARSS 2001, vol. 3, pp. 1149–1151 (2001)
Graña, M., Gallego, J., Hernandez, C.: Further results on AMM for endmember induction. In: Proc. IEEE Workshop on Adv. Tech. Anal. Remotely Sensed Data, Washingto D.C, October 2003, pp. 237–243 (2003)
Graña, M., Gallego, J.: Associative morphological memories for endmember induction. In: Proc. Geosci. Rem. Sens. Symp., IGARSS 2003, Tolouse, July 2003, vol. 6, pp. 3757–3759 (2003)
Gualtieri, J.A., Chettri, S.: Support vector machines for classification of hyperspectral data. In: Proc. Geosci. Rem. Sens. Symp., 2000, IGARSS 2000, vol. 2, pp. 813–815 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maldonado, O., Vicente, D., Graña, M., d’Anjou, A. (2005). Content Based Retrieval of Hyperspectral Images Using AMM Induced Endmembers. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552413_118
Download citation
DOI: https://doi.org/10.1007/11552413_118
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28894-7
Online ISBN: 978-3-540-31983-2
eBook Packages: Computer ScienceComputer Science (R0)