Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3682))

  • 1049 Accesses

Abstract

Closed itemset mining is a difficult problem especially when we consider the task in the context of a data stream. Compared to mining from a static transaction data set, the streaming case has far more information to track and far greater complexity to manage. In this paper, we propose a complete solution based on CLOSET+ algorithm to closed itemset mining in data streams. In data streams, bounded memory and one-pass constraint are expected. In our solution, these constraints are both taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Next Generation Data Mining, AAAI/MIT (2003)

    Google Scholar 

  2. Pei, J., Han, J., Wang, J.: Closet+: Searching for the best strategies for mining frequent closed itemsets. In: SIGKDD 2003 (August 2003)

    Google Scholar 

  3. Liu, J., Pan, Y., Wang, K., Han, J.: Mining frequent item sets by opportunistic projection. In: SIGKDD 2002 (July 2002)

    Google Scholar 

  4. Zaki, M., Hsiao, C.: CHARM: An efficient algorithm for closed itemset mining. In: SDM 2002 (April 2002)

    Google Scholar 

  5. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A maximal frequent itemset algorithm for transactional databases. In: ICDE 2001 (April 2001)

    Google Scholar 

  6. Han, E., Karypis, G., Kumar, V.: Scalable Parallel Data Mining for Association Rules. In: TKDE, vol. 12(2) (2000)

    Google Scholar 

  7. Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining frequent closed itemsets. In: DMKD 2000 (May 2000)

    Google Scholar 

  8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: SIGMOD 2000 (May 2000)

    Google Scholar 

  9. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: ICDT 1999 (January 1999)

    Google Scholar 

  10. Bayardo, R.J.: Efficiently Mining long patterns from databases. In: SIGMOD 1998 (June 1998)

    Google Scholar 

  11. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic Itemset Counting and Implication Rules for Market Basket Data. In: SIGMOD 1997 (May 1997)

    Google Scholar 

  12. Gunopulos, D., Mannila, H., Saluja, S.: Discovering All Most Specific Sentences by Randomized Algorithms. In: ICDT 1997 (January 1997)

    Google Scholar 

  13. Toivonen, H.: Sampling Large Databases for Association Rules. In: VLDB 1996 (September 1996)

    Google Scholar 

  14. Park, J., Chen, M., Yu, P.S.: An Effective Hash Based Algorithm for Mining Association Rules. In: SIGMOD 1995 (May 1995)

    Google Scholar 

  15. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD 1993 (May 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Li, W., Li, Z., Fan, L. (2005). Finding Closed Itemsets in Data Streams. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552451_133

Download citation

  • DOI: https://doi.org/10.1007/11552451_133

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28895-4

  • Online ISBN: 978-3-540-31986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics