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Abstract. This paper describes a comparative evaluation of two fuzzy-derived 
techniques for modelling fuel spray penetration in the cylinders of a diesel internal 
combustion engine. The first model is implemented using conventional fuzzy-based 
paradigm, where human expertise and operator knowledge were used to select the 
parameters for the system. The second model used an adaptive neuro-fuzzy 
inference system (ANFIS), where automatic adjustment of the system parameters is 
effected by a neural networks based on prior knowledge. Two engine operating 
parameters were used as inputs to the model, namely in-cylinder pressure and air 
density. Spray penetration length was modelled on the basis of these two inputs. The 
models derived using the two techniques were validated using test data that had not 
been used during training. The ANFIS model was shown to achieve an improved 
accuracy compared to a pure fuzzy model, based on conveniently selected 
parameters. 

1 Introduction 

 
In a diesel engine, the combustion and emission characteristics are influenced by fuel 

atomisation, nozzle geometry, injection pressure, shape of inlet port, and other factors. In 
order to improve air-fuel mixing, it is important to understand the fuel atomisation and 
spray formation processes. Researchers have investigated the characteristics of the spray 
behaviour, formation and structure for the high-pressure injector by experimental and 
theoretical approaches in order to improve the combustion performance and reduce 
exhaust emissions. However, further detailed studies of the atomisation characteristics and 
spray development processes of high-pressure diesel sprays are still relevant. 

Intelligent systems, software systems incorporating artificial intelligence, have shown 
many advantages in engineering system control and modelling. They have the ability to 
rapidly model and learn characteristics of multi-variant complex systems, exhibiting 
advantages in performance over more conventional mathematical techniques. This has led 
to them being applied in diverse applications in power systems, manufacturing, 
optimisation, medicine, signal processing, control, robotics, and social/psychological 



 

sciences [1, 2]. Fuzzy logic is a problem-solving technique that derives its power from its 
ability to draw conclusions and generate responses based on vague, ambiguous, 
incomplete and imprecise information. To simulate this process of human reasoning it 
applies the mathematical theory of fuzzy sets first defined by Zadeh, in 1965 [3]. Fuzzy 
inference is the process of formulating a mapping from a given input value to an output 
value using fuzzy logic. The mapping then provides a basis from which decisions can be 
made, or patterns discerned. It has been proved that the system can effectively express 
highly non-linear functional relationships [4]. Fuzzy inference systems (FIS) have been 
successfully applied in fields such as automatic control, data classification, decision 
analysis, expert systems and computer vision. 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), developed in the early 90s by 
Jang [5], combines the concepts of fuzzy logic and neural networks to form a hybrid 
intelligent system that enhances the ability to automatically learn and adapt. Hybrid 
systems have been used by researchers for modelling and predictions in various 
engineering systems. The basic idea behind these neuro-adaptive learning techniques is to 
provide a method for the fuzzy modelling procedure to learn information about a data set, 
in order to automatically compute the membership function parameters that best allow the 
associated FIS to track the given input/output data. The membership function parameters 
are tuned using a combination of least squares estimation and backpropagation algorithm 
for membership function parameter estimation. These parameters associated with the 
membership functions will change through the learning process similar to that of a neural 
network. Their adjustment is facilitated by a gradient vector, which provides a measure of 
how well the FIS is modelling the input/output data for a given set of parameters. Once 
the gradient vector is obtained, any of several optimisation routines could be applied in 
order to adjust the parameters so as to reduce error between the actual and desired outputs. 
This allows the fuzzy system to learn from the data it is modelling. The approach has the 
advantage over the pure fuzzy paradigm that the need for the human operator to tune the 
system by adjusting the bounds of the membership functions is removed. 

Many of the combustion problems are exactly the types of problems and issues for 
which an AI approach appears to be most applicable and has the potential for making 
better, quicker and more accurate predictions than traditional methods. The increasing 
availability of advanced computer equipment and sensory systems, frequently results in 
the production of large amounts of information-rich data, and there are often inadequate 
means of analysing it so as to extract meaning. The aim of this investigation was to apply 
intelligent systems tools and techniques to achieve an improved ability to analyse large 
complex data sets generated during engine research in a semi-automated way. An 
intelligent paradigm was created based on a fuzzy logic inference system combined with 
conventional techniques. 

 
 



 

2 Methods 

2.1 Pure Fuzzy Logic Model 

Fuzzy logic provides a practicable way to understand and manually influence the 
mapping behaviour. In general, fuzzy logic uses simple rules to describe the system of 
interest rather than analytical equations, making it easy to implement. An advantage, such 
as robustness and speed, fuzzy logic method is one of the best solutions for system 
modelling and control. A FIS contains three main components, the fuzzification stage, the 
rule base and the defuzzification stage. The fuzzification stage is used to transform the so-
called crisp values of the input variables into fuzzy membership values. Then, these 
membership values are processed within the rule-base using conditional ‘if-then’ 
statements. The outputs of the rules are summed and defuzzified into a crisp analogue 
output value.  The effects of variations in the parameters of a FIS can be readily 
understood and this facilitates calibration of the model. 

The system inputs, which in this case are the cylinder pressure and the air density, are 
called linguistic variables, whereas ‘high and ‘very high’ are linguistic values which are 
characterised by the membership function. Following the evaluation of the rules, the 
defuzzification transforms the fuzzy membership values into a crisp output value, for 
example, the penetration depth. The complexity of a fuzzy logic system with a fixed 
input-output structure is determined by the number of membership functions used for the 
fuzzification and defuzzification and by the number of inference levels. A fuzzy system of 
this kind requires that knowledgeable human operate initialise the system parameters e.g. 
the membership function bounds. The operator must then optimise these parameters to 
achieve a required level of accuracy of mapping of the physical system by the fuzzy 
system. While the visual nature of a fuzzy system facilitates the optimisation of the 
parameters, the need for it to be accomplished manually is a disadvantage. 

2.2 ANFIS Model 

ANFIS largely removes the requirement for manual optimisation of the fuzzy system 
parameters. A neural network is used to automatically tune the system parameters, for 
example the membership function bounds, leading to improved performance without 
operator invention. In addition to a purely fuzzy approach, an ANFIS was also developed 
for the estimation of spray penetration because the combination of neural network and 
fuzzy logic enables the system to learn and improve its performance based on past data. 
The neuro-fuzzy system with the learning capability of neural network and with the 
advantages of the rule-base fuzzy system can improve the performance significantly and 
can provide a mechanism to incorporate past observations into the classification process. 
In a neural network the training essentially builds the system. However using a neuro-



 

fuzzy scheme, the system is built by fuzzy logic definitions and then it is refined using 
neural network training algorithms. 

3 Experimental Work 

A large collection of spray data are generated using the Ricardo Proteus test engine. 
These data comprised images depicting the spray patterns of diesel injection processes, 
under selected conditions of relative pressure, nozzle size and type and in-cylinder air 
temperature. The images representing time-varying spray under each relative pressure 
condition were examined and processed using a thresholding technique whereby each 
image representing the instant of maximum penetration length was then determined, 
yielding a maximum penetration value which could be linked with its corresponding 
relative pressure across the injector. The collected maximum spray penetration values and 
corresponding relative pressures then formed a labelled data to be modelled by the FIS as 
shown schematically in Figure 1. 

 
Fig. 1. Schematic diagram of FIS modelling 
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3.1 Pre-processing 

Raw penetration lengths were plotted against time under each relative pressure and 
density condition. Polynomial fitting was employed to produce best fitted curves where 
maximum penetration values can be depicted. These were combined into a vector with 
which to train the ANFIS as shown in Table 1. 

 
Table 1: Training data sets and results 

 
Parameters 

Data set 
Relative pressure (MPa) Density (kg/m3) 

Measured penetration (mm) 

1 60 14 53 
2 60 35 32 
3 100 14 52 
4 100 35 38 
5 160 14 54 
6 160 35 36 

3.2 Pure Fuzzy Inference Model 

 
Figure 2 illustrates the fuzzy sets which were used in the pure fuzzy logic inference 

system. There were two stages in the inference model, the in-cylinder pressure and the air 
density; both stages are described in detail. The pressure and density range from 60MPa - 
160MPa and 14kg/m3 - 42kg/m3 respectively. Both in-cylinder pressure and air density 
fuzzy sets used generalised bell-shaped membership functions for classes low, medium 
and high. It was empirically selected based on the features of all data under consideration 
although in many cases membership functions are fixed and somewhat arbitrarily chosen. 
The process was carried out by examining the ranges of all data sets to determine where 
the majority of points were located. The functions were also created to have an 
approximately equal amount of overlap between each membership curve. Experimental 
adjustment of the limits of the membership classes enabled the response of the model to 
be tailored to the experimental output from the experimental data. 

The rule structure is essentially predetermined by the user’s interpretation of the 
characteristics of the input parameters in the model. The contents of these rule-base and 
membership functions undertake many modifications as part of the process of heuristic 
optimisation and in many cases it is a continuing process. Examples of the rules initially 
contained in the rule-base for the pure fuzzy model are shown in Table 2. 

 
 
 



 

Table 2. Fuzzy rule-base 
 

IF Pressure = Low AND Density = Low THEN Penetration = Large 
IF Pressure = Low AND Density = Med THEN Penetration = Small 
IF Pressure = Low AND Density = High THEN Penetration = Small 
IF Pressure = Med AND Density = Low THEN Penetration = Medium 
IF Pressure = Med AND Density = Med THEN Penetration = Very Large 
IF Pressure = Med AND Density = High THEN Penetration = Very Small 
IF Pressure = High AND Density = Low THEN Penetration = Large 
IF Pressure = High AND Density = Med THEN Penetration = Medium 
IF Pressure = High AND Density = High THEN Penetration = Very Small 

 

 
Fig. 2. Fuzzy sets 

 

 
Fig. 3. Pure fuzzy logic model – surface 
plot 

 
The fuzzifed values for the outputs of the rules were classified into membership sets 

similarly to the input values. While the output membership functions may be trapezoidal 
or triangular, in this case, an output singletons were used which has a compact form and 
computationally efficient representation. The fuzzy output singletons were defuzzified to 
a crisp value of penetration depth by means of the widely-used centre of gravity method. 

The control surface in Figure 3 shows the crisp value of penetration depth at different 
combinations of in-cylinder pressure and air density using a pure fuzzy logic model. Each 
of these intersection points indicates the differing predicted value of spray penetration 
depth, which is determined by the design of fuzzy sets, rule-base and membership 
functions. The surface plot acts as a practical means of determining the output needed for 
each combination of input parameters. 



 

3.3 Neuro-fuzzy Model 

A FIS was devised using Matlab® based application, ANFIS.  A neuro-adaptive 
learning technique facilitated the learning of information about a data set by the fuzzy 
modelling procedure, in order to compute the membership function parameters that best 
allow the associated FIS to track the given input/output data rather than choosing the 
parameters associated with a given membership function arbitrarily.  

A Matlab programme was generated and compiled; The pre-processed input/output 
spray vector matrix which contained all the necessary representative features was used to 
train the FIS. Figure 4 shows the structure of the ANFIS; a Sugeno FIS was used in this 
investigation. Figure 5 shows the fuzzy rule architecture of the FIS which consisted of 9 
fuzzy rules. During training in ANFIS, 6 sets of pre-processed data were used to conduct 
180 cycles of learning. Figure 6 shows the final membership functions under two different 
air input conditions derived by training the generalised bell-shaped membership function.  

 

  
Fig. 4. The ANFIS model 
structure

 Fig. 5. Fuzzy rule architecture of the 
generalised bell-shaped membership 
function 

 
 

Fig. 6. Fuzzy sets 

 
Fig. 7. Surface plot showing 
relationship between input and output 
parameters 



 

4 Results and Discussion 

Table 3 shows the predicted penetration length obtained from the ANFIS. Figure 7 
depicts a three-dimensional plot that represents the mapping from relative pressure and air 
density to spray penetration length. As the relative pressure and air density increases, the 
predicted penetration length increases in a non-linear piecewise manner, this being largely 
due to non-linearity of the characteristic of the input vector matrix derived from the raw 
image data. This assumes that these raw image data are fully representative of the features 
of the data that the trained FIS is intended to model. However the data are inherently 
noisy and training data may not always faithfully represent all the features of the data that 
should be presented to the model. Therefore, the accuracy of the model will be adversely 
affected under such circumstances. 

4.1 Model Validation 

The data in Table 3 was used to determine how well the FIS model could predict the 
penetration length corresponding to various values of pressure and density. Figure 8 
shows scatter plot of the measured and FIS modelled penetration length utilising six sets 
of testing data. These two diagrams demonstrate that the predicted values are close to the 
experimentally-measured values, as many of the data points fall very close to the diagonal 
(dotted) line, indicating good correlation. Figure 9 shows similar comparisons between the 
FIS-modelled and measured values of the penetration length using the same testing data. 
Clearly the model created by ANFIS has a better agreement than the pure fuzzy logic 
model. The correlation coefficient also suggested identical findings. 

 
Table 3. Testing data and results 

 
Parameters Penetration (mm) Data 

set Relative pressure (MPa) Density (kg/m3) Measured Pure Fuzzy Paradigm ANFIS 

1 60 28 33 30 33 
2 60 40 35 28 35 
3 100 28 40 40 41 
4 100 40 29 23 29 
5 160 28 40 39 40 
6 160 40 30 21 30 
  Correlation coefficient 0.971 0.997 
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Fig. 8. Scatter plot of measured 
penetration and predicted penetration 

Heated air

20

25

30

35

40

45

0 1 2 3 4 5 6 7

Data set

P
en

et
ra

tio
n 

(m
m

)

Measured

Pure Fuzzy Logic

ANFIS

 
Fig. 9. Comparisons between predicted 
and measured penetration 

4.2 Discussion 

The ANFIS is a non-linear computational method that has potential for modelling 
complex systems with unclear input to output relationships due to its ability to combine 
fuzzy logic and system identification techniques in a hybrid manner. This type of system 
has several advantages when assigned to applications in which only partial knowledge of 
the system characteristics are known, as is typically the case with engineering systems. 
Additionally, the ANFIS can rapidly identify important characteristics of the data, which 
is an important and useful feature of models used for estimation purposes in IC engines 
research. In the experiment, we have used an ANFIS to predict changes in diesel spray 
penetration depth as a potential means to monitor impending changes in combustion 
chamber and fuel injector design. As an initial step toward modelling and prediction with 
an ANFIS for this particular application, it has proven very useful for short-term 
prediction of penetration depth using engine operating parameters as the input. 

The correlation coefficient reflects a model’s ability to predict the output based on the 
input used. While both models performed fairly well and approximated the output 
function to a reasonable extent, the ANFIS model exhibited improved performance in this 
respect. Pure fuzzy logic models were conveniently constructed whilst the ANFIS 
performed well in cases where the input to output relationships become more complex. 

5 Conclusions 

This paper demonstrated that fuzzy and neuro-fuzzy techniques can be used to model 
diesel fuel spray penetration for an internal combustion engine, leading to convenient and 
quick investigation on the effect of penetration length under different operating 
parameters, including in-cylinder pressure, density, air temperature, etc. The pure fuzzy 



 

logic and neuro-fuzzy system, ANFIS employed in this work are quick and robust. It has 
been applied to sets of pre-processed raw diesel engine spray data and successfully 
compared. The pure fuzzy logic model employed simple calibrated membership functions 
and nine optimised rules to represent a diesel spray input/output mapping whilst the 
neuro-fuzzy model has based on a total of six sets of experimental image data which were 
used for training the FIS. Both devised models were validated by comparing the predicted 
results against the experimental data. The correlation coefficient of the penetration length 
estimated by ANFIS is 0.997. The pure fuzzy logic model has a smaller figure of 0.971 
which suggested a poorer correlation with this model. 

These fuzzy models set an example of how intelligent technique can be used in diesel 
spray modelling. The system is very conductive to improvement and adjustment and it can 
be fine-tuned and improved over time when more engine operating parameters become 
available. Moreover, these techniques and idea can conveniently be extended to, and be 
invaluable for, other combustion systems such as modelling and emission predictions in: 
boilers, furnaces and incinerators. Also, for internal combustion engines, potential 
applications include modelling and control of: spark ignition engines and gas engines. 
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