Abstract
A fast and robust type of unsupervised multispectral texture segmentation method with unknown number of classes is presented. Single decorrelated monospectral texture factors are represented by four local autoregressive random field models recursively evaluated for each pixel and for each spectral band. The segmentation algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark using nineteen most frequented segmentation criteria.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP-Image Understanding 57, 359–372 (1993)
Kashyap, R.: Image models. In: Young, T.Y., Fu, K.F. (eds.) Handbook of Pattern Recognition and Image Processing. Academic Press, New York (1986)
Haindl, M.: Texture synthesis. CWI Quarterly 4, 305–331 (1991)
Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 939–954 (1995)
Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 478–482 (1991)
Andrey, P., Tarroux, P.: Unsupervised segmentation of markov random field modeled textured images using selectionist relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 252–262 (1998)
Haindl, M.: Texture segmentation using recursive markov random field parameter estimation. In: Bjarne, K., Peter, J. (eds.) Proceedings of the 11th Scandinavian Conference on Image Analysis, Lyngby, Denmark, pp. 771–776. Pattern Recognition Society of Denmark (1999)
Haindl, M., Mikeš, S.: Model-based texture segmentation. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 306–313. Springer, Heidelberg (2004)
Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co, Singapore (1992)
Prague texture segmentation data-generator and benchmark(2004), http://mosaic.utia.cas.cz
Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K., Eggert, D.W., Fitzgibbon, A., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. IEEE Transaction on Pattern Analysis and Machine Intelligence 18, 673–689 (1996)
Rosenfield, G.: Analysis of thematic map classification error matrices. Photogram-metric Engineering and Remote Sensing 52, 681–686 (1986)
Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image bounderies using brightness and texture. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1–19 (2004)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)
Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems. Springer, Heidelberg (1999)
Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, vol. 4, pp. 150–155. IEEE Computer Society Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haindl, M., Mikeš, S. (2005). Colour Texture Segmentation Using Modelling Approach. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_54
Download citation
DOI: https://doi.org/10.1007/11552499_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)