Skip to main content

Colour Texture Segmentation Using Modelling Approach

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

  • 1953 Accesses

Abstract

A fast and robust type of unsupervised multispectral texture segmentation method with unknown number of classes is presented. Single decorrelated monospectral texture factors are represented by four local autoregressive random field models recursively evaluated for each pixel and for each spectral band. The segmentation algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark using nineteen most frequented segmentation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP-Image Understanding 57, 359–372 (1993)

    Article  Google Scholar 

  2. Kashyap, R.: Image models. In: Young, T.Y., Fu, K.F. (eds.) Handbook of Pattern Recognition and Image Processing. Academic Press, New York (1986)

    Google Scholar 

  3. Haindl, M.: Texture synthesis. CWI Quarterly 4, 305–331 (1991)

    MATH  Google Scholar 

  4. Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 939–954 (1995)

    Article  Google Scholar 

  5. Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 478–482 (1991)

    Article  Google Scholar 

  6. Andrey, P., Tarroux, P.: Unsupervised segmentation of markov random field modeled textured images using selectionist relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 252–262 (1998)

    Article  Google Scholar 

  7. Haindl, M.: Texture segmentation using recursive markov random field parameter estimation. In: Bjarne, K., Peter, J. (eds.) Proceedings of the 11th Scandinavian Conference on Image Analysis, Lyngby, Denmark, pp. 771–776. Pattern Recognition Society of Denmark (1999)

    Google Scholar 

  8. Haindl, M., Mikeš, S.: Model-based texture segmentation. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 306–313. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co, Singapore (1992)

    Google Scholar 

  10. Prague texture segmentation data-generator and benchmark(2004), http://mosaic.utia.cas.cz

  11. Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K., Eggert, D.W., Fitzgibbon, A., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. IEEE Transaction on Pattern Analysis and Machine Intelligence 18, 673–689 (1996)

    Article  Google Scholar 

  12. Rosenfield, G.: Analysis of thematic map classification error matrices. Photogram-metric Engineering and Remote Sensing 52, 681–686 (1986)

    Google Scholar 

  13. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image bounderies using brightness and texture. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1–19 (2004)

    Article  Google Scholar 

  14. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  15. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems. Springer, Heidelberg (1999)

    Google Scholar 

  16. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, vol. 4, pp. 150–155. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haindl, M., Mikeš, S. (2005). Colour Texture Segmentation Using Modelling Approach. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_54

Download citation

  • DOI: https://doi.org/10.1007/11552499_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics