Skip to main content

Effect of Synthetic Emotions on Agents’ Learning Speed and Their Survivability

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

The paper considers supervised learning algorithm of nonlinear perceptron with dynamic targets adjustment which assists in faster learning and cognition. A difference between targets of the perceptron corresponding to objects of the first and second categories is associated with stimulation strength. A feedback chain that controls the difference between targets is interpreted as synthetic emotions. In a population of artificial agents that ought to learn similar pattern classification tasks, presence of the emotions helps a larger fraction of the agents to survive. We found that optimal level of synthetic emotions depends on difficulty of the pattern recognition task and requirements to learning quality and confirm Yerkes-Dodson law found in psychology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ortony, A., Clore, G., Collins, A.: The Cogitive Structure of the Emotions. Cambridge University Press, New York (1988)

    Google Scholar 

  2. Griffiths, P.: What Emotions Really Are: The Problem of Psychological Categories. Chicago University Press, Chicago (1997)

    Google Scholar 

  3. Oatley, K., Jenkins, J.: Understanding Emotions. Blackwell, Oxford (1996)

    Google Scholar 

  4. Izard, C.E.: Four systems for emotion activation – cognitive and noncognitive processes. Psychological Review 100(1), 68–90 (1993)

    Article  Google Scholar 

  5. Lazarus, R.S.: Emotions and adaptation. Oxford University Press, New York (1991)

    Google Scholar 

  6. Goleman, D.: Emotional Intelligence: Why It Can Matter More than IQ. Bloomsbury Publishing, London (1996)

    Google Scholar 

  7. Pfeifer, R.: The fungus eater approach to emotion: a view from artificial intelligence. Cognitive Studies, The Japanese Society for Cognitive Sci. 1, 42–57 (1994)

    Google Scholar 

  8. Chwelos, G., Oatley, K.: Appraisal, computational models, and Scherer expert system. Cognition and Emotion 8(3), 245–257 (1994)

    Article  Google Scholar 

  9. Picard, R.W.: Affective Computing. The MIT Press, Cambridge (1997)

    Google Scholar 

  10. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. Neural Networks 1(3), 295–307 (1988)

    Article  Google Scholar 

  11. Radi, A., Poli, R.: Genetic programming discovers efficient learning rules for the hidden and output layers of feedforward neural networks. In: Poli, R., Nordin, P. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 120–134. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Yao, X.: Evolving artificial neural networks. Proc. of IEEE 87(1), 1423–1447 (1999)

    Google Scholar 

  13. The MathWorks, Matlab: The language of technical computing (1998), http://www.mathworks.com

  14. Raudys, S.: Classifier’s complexity control while training multilayer perceptrons. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 32–44. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Raudys, S.: Statistical and Neural Classifiers: An integrated approach to design. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press, Bradford Book (1998)

    Google Scholar 

  17. Haykin, S.: Neural Networks: A comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  18. Raudys, S., Justickis, V.: Yerkes-Dodson law in agents’ training. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 54–58. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Yerkes, R.M., Dodson, J.D.: The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology 18, 459–482 (1908)

    Article  Google Scholar 

  20. Teigen, K.H.: Yerkes-Dodson – a law for all seasons. Theory and Psychology 4(4), 525–547 (1994)

    Article  Google Scholar 

  21. Thorndike, E.L.: Animal Intelligence. Hafner, Darien (1911)

    Google Scholar 

  22. Pavlov, I.P.: New researches on conditioned reflexes. Science 58, 359–361 (1923)

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the microstructure of cognition, vol. I, pp. 318–362. Bradford Books, Cambridge (1986)

    Google Scholar 

  24. Raudys, S.: Evolution and generalization of a single neurone. I. SLP as seven statistical classifiers. Neural Networks 11(2), 283–296 (1998)

    Article  Google Scholar 

  25. Raudys, S.: An adaptation model for simulation of aging process. Int. J. of Modern Physiscs, C. 13(8), 1075–1086 (2002)

    Article  Google Scholar 

  26. Raudys, S., Hussain, A., Justickis, V., Pumputis, A., Augustinaitis, A.: Functional model of criminality: simulation study. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 410–423. Springer, Heidelberg (2005) (in press)

    Chapter  Google Scholar 

  27. Raudys, S.: Survival of intelligent agents in changing environments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 109–117. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raudys, Š. (2005). Effect of Synthetic Emotions on Agents’ Learning Speed and Their Survivability. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_1

Download citation

  • DOI: https://doi.org/10.1007/11553090_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics