Skip to main content

A Self-organising, Self-adaptable Cellular System

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

Inspired by the recent advances in evolutionary biology, we have developed a self-organising, self-adaptable cellular system for multitask learning. The main aim of our project is to design and prototype a framework that facilitates building complex software systems in an automated and autonomous fashion. The current implementation consists of specialised programs that call (co-operate with) their local neighbours. The relationships between programs self-assemble in a symbiotic-like fashion.

Specialisation is achieved by stochastic exploration of alternative configurations and program space. A collection of global and local behaviours have been observed and investigated. Based on preliminary experimental results, certain behaviours that spontaneously exhibit self-organisation and self-assembly are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular biology of the cell, 3rd edn. Garland Publishing, New York (1994)

    Google Scholar 

  2. Baxter, J.: A model of inductive bias learning. Journal of Artificial Intelligence Research 12, 149–198 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (2000)

    Google Scholar 

  4. Caruana, R.: Multitask learning. In: Machine Learning, vol. 28, pp. 41–75. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  5. Gupta, R.S., Golding, G.B.: The origin of the eukaryotic cell. Trends in Biochemical Sciences 21(10), 166–171 (1996)

    Google Scholar 

  6. Margulis, L.: Origin of Eukaryotic Cells. University Press, New Haven (1970)

    Google Scholar 

  7. Margulis, L.: Symbiosis in Cell Evolution. W.H. Freeman, San Francisco (1981)

    Google Scholar 

  8. Margulis, L., Sagan, D.: Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors. Summit Books, New York (1986)

    Google Scholar 

  9. Mereschkowsky, K.S.: Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25, 593–604 (1905)

    Google Scholar 

  10. Nowostawski, M., Purvis, M., Cranefield, S.: An architecture for self-organising Evolvable Virtual Machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Schmidhuber, J.: Environment-independent reinforcement acceleration. Technical Note IDSIA-59-95, IDSIA, Lugano (1995)

    Google Scholar 

  12. Schmidhuber, J.: A general method for incremental self-improvement and multiagent learning. In: Yao, X. (ed.) Evolutionary Computation: Theory and Applications, ch. 3, pp. 81–123. Scientific Publishers Co., Singapore (1999)

    Google Scholar 

  13. Sipper, M.: The emergence of cellular computing. IEEE Computer 32(7), 18–26 (1999)

    Google Scholar 

  14. Teuscher, C.: Information processing in cells and tissues. BioSystems 76, 3–5 (2004)

    Article  Google Scholar 

  15. Thom, R.: Structural stability and morphogenesis. Benjamin Addison Wesley, New York (1975)

    MATH  Google Scholar 

  16. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Touretzky, D., Mozer, M. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 8, pp. 640–646. MIT Press, Cambridge (1996)

    Google Scholar 

  17. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. A Bradford Book, MIT Press, Cambridge, Massachusetts/London, England (1999)

    MATH  Google Scholar 

  18. Wallin, I.: Symbionticism and the Origin of Species. Williams&Wilkins, Baltimore (1927)

    Google Scholar 

  19. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Epiney, L., Nowostawski, M. (2005). A Self-organising, Self-adaptable Cellular System. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_14

Download citation

  • DOI: https://doi.org/10.1007/11553090_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics