Skip to main content

Self-repair Ability of a Toroidal and Non-toroidal Cellular Developmental Model

  • Conference paper
Book cover Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

This paper is part of a larger project whose main objective is to demonstrate experimentally that the following hypothesis holds: computational developmental systems on a cellular structure are a) naturally fault-tolerant and b) evolvable. By naturally we mean that the system is not fault-tolerant by explicit design nor due to evolutionary pressure, but rather that the framework insures a high probability of fault-tolerance as an emergent property. In this paper, we propose to study the self-repair capacities of a specific developmental cellular system introduced in [13]. More specifically we compare the toroidal and the non-toroidal cases. Their evolvability is to be presented in details in a further article. All the examples studied here have been evolved to configure an abstract digital circuit. The evolved organisms are subjected to a series of different fault models and their self-repair abilities are reported. From the results exposed here, it can be concluded that, while not systematic, perfect self-repair, and hence fault-tolerance is a highly probable property of these organisms and that many of them even exhibit fully perfect self-repair behaviour under all tests performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basanta, D., Miodownik, M., Bentley, P.J., Holm, E.: Evolving and growing microstructures of using biologically inspired ca. In: 2004 NASA/DoD Conference on Evolvable Hardware, pp. 275–282. IEEE Comput. Soc., Los Alamitos (2004)

    Chapter  Google Scholar 

  2. Hogeweg, P.: Shapes in the shadow: evolutionary dynamics of morphogenesis. Artificial Life 6(1), 85–101 (2000)

    Article  Google Scholar 

  3. Kim, J.: Transsys: a generic formalism for modelling regulatory networks in morphogenesis. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 242–251. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: A graph grammar approach to artificial life. Artificial Life 10(4), 413–431 (2004)

    Article  Google Scholar 

  5. Leung, C., Berzins, M.: A computational model for organism growth based on surface mesh generation. Journal of Computational Physics 188(1), 75–99 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu, H., Miller, J., Tyrell, A.: An intrinsic robust transient fault-tolerant developmental system. In: Workshop on Regenerationand Learning in Developmental Systems, GECCO 2004 (2004)

    Google Scholar 

  7. Macias, N.J., Durbeck, L.K.: Self-assembling circuits with autonomous fault handling. In: Stoica, A., Lohn, J., Katz, R., Keymeulen, D., Zebulum, R.S. (eds.) Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pp. 46–55 (2002)

    Google Scholar 

  8. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards robust integrated circuits: The embryonics approach. Proceedings of the IEEE 88(4), 516–541 (2000)

    Article  Google Scholar 

  9. Miller, J., Thompson, P.: Beyond the complexity ceiling, evolution, emergence and regeneration. In: Workshop on Regenerationand Learning in Developmental Systems, GECCO 2004 (2004)

    Google Scholar 

  10. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf, W., et al. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Miller, J.F., Hartmann, M.: Untidy evolution: evolving messy gates for fault-tolerance. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T. (eds.) ICES 2001. LNCS, vol. 2210, pp. 14–25. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Miller, J.F., Thompson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Ozturkeri, C., Capcarrere, M.S.: Emergent robustness and self-repair through developmental cellular systems. In: Ninth International Conference on the Simulation and Synthesis of Living Systems (ALIFE9), pp. 21–26. MIT Press, Cambridge (2004)

    Google Scholar 

  14. Pfeifer, R.: Interacting with the real world: design principles for intelligent systems. In: Ninth International Symposium on Artificial Life and Robotics (AROB 9th 2004), vol. 1, pp. 13–18. Oita University (2004)

    Google Scholar 

  15. Righetti, L., Shokur, S., Capcarrère, M.S.: Evolution of fault-tolerant self-replicating structures. In: Banzhaf, W., et al. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 278–288. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Roggen, D., Federici, D.: Multi-cellular development: Is there scalability and robustness to gain? In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 391–400. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Stanley, K., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  18. Streichert, F., Spieth, C., Ulmer, H., Zell, A.: Evolving the ability of limited growth and self-repair for artificial embryos. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 289–298. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. van Remortel, P., Manderick, B., Lenaerts, T.: Gene interaction and modularisation in a model for gene-regulated development. In: 2004 NASA/DoD Conference on Evolvable Hardware, pp. 253–260. IEEE Comput. Soc., Los Alamitos (2004)

    Chapter  Google Scholar 

  20. Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., Smith, J.: Principles of Development, 2nd edn. Oxford University Press, Oxford (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Öztürkeri, C., Capcarrere, M.S. (2005). Self-repair Ability of a Toroidal and Non-toroidal Cellular Developmental Model. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_15

Download citation

  • DOI: https://doi.org/10.1007/11553090_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics