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Abstract. The concept of modularity appears to be crucial for many
questions in the field of Artificial Life research. However, there have not
been many quantitative measures for modularity that are both general
and viable. In this paper we introduce a measure for modularity based
on information theory. Due to the generality of the information theory
formalism, this measure can be applied to various problems and models;
some connections to other formalisms are presented.

1 Introduction

In the studies of complex systems and Artificial Life, a central question is how it
is possible that, over time, systems can emerge with ever increasing complexity.
This question is particularly prominent if one considers the Darwinian evolution
which, from a naive point of view, appears to be mainly directed random search
with a large test population. However, even the powerful parallelism that is
available to evolution in form of huge numbers of individuals cannot alone explain
how the vast search space of possible configurations of living organisms can be
efficiently searched and exploited towards increasing complexity.
It seems that nature employs to some degree the same method as human

programmers in large software systems (or vice versa). In the latter, with the
advent of the software crisis in the 1970s [1] , it became clear that large mono-
lithic software systems in which each part depends on many others (a form of
nonlocality) are unmanageable. Even if they should work reasonably reliably at
a certain point in time, they cannot easily be adapted to new tasks. This is being
solved by introducing modules which solve subproblems independently from the
rest of the system and organizing larger systems by building them up from these
smaller, manageable modules.
Adaptability is one of the central motifs of natural evolution. Therefore, the

question arises whether evolution manages complexity in a similar way as human
software engineers, via modularity. It turns out that there are several phenom-
ena in nature that can be construed as exhibiting elements of modularity. The



existence of genes that encode certain traits of the phenotype, the crossover oper-
ator (which is construed by researchers of artificial evolution as to be preserving
building blocks which encode for separable (i.e. modular) properties of the phe-
notype. Of course, the situation in systems evolving in nature is much more
involved as there is no human designer, but even in artificial software systems
pure modularity does not exist in general.
As different as the different instances of systems are that exhibit or do not

exhibit modularity and as different the language is that is being used in con-
junction with those, they seem to share common properties. It would be very
useful to formalize these properties in a common language. It would enable us
to understand better what modularity is, when it can be made use of, or even
when we can expect it to emerge [2–4] thus helping us to obtain further clues
how natural evolution manages to climb the ladder of complexity.
It seems, however, that only relatively recently systematic approaches have

been made to decomposition of tackle the decompositional structures of complex
systems [5]. In the wake of the success of information-theoretic methods in the
study of dynamical systems [6], recent approaches to address the question of
modular decomposition of networks convert static networks into dynamic sys-
tems via a diffusion dynamics approach and analyse it applying spectral graph
and information theory [7, 8]. Independence graphs derived from probabilistic
relations [9] and related information-theoretical notions [10] provide a growing
toolbox to address these questions.
The specific systems we will address here already have an a priori dynami-

cal structure and do not require it to be artificially imposed, as done in above
models. At the same time, they are of high relevance for Artificial Life stud-
ies. We begin with the illustrative and inspiring model from [11] and show how
information theory can be used in order to adapt its classifications as to be-
come both more intuitive and finer-grained. We will then relate this approach
to modularity arising due to the variation operator in Evolutionary Algorithms.
For a special case, we will establish a direct connection between the measure of
coupling introduced here and the modularity matrix elements in [2, 4].

2 Towards a Quantitative Notion for Modularity

In a recent discussion of possible characterizations of modularity by Watson,
several illustrative scenarios are presented that highlight different important
aspects of the issue [11]. Since we felt it offers many relevant points and fruitful
ideas, in the present paper we wish to build upon some of these discussions, offer
alternative formal notions of modularity and study some of their conceptual and
quantitative properties.

2.1 Probability Notation

We will apply the following notation: for a random variable X we will denote its
domain by X and a concrete sample value of X will be denoted by x. Let now



X,Y be jointly distributed random variables. Let P (X = x) be the probability
thatX assumes the value x ∈ X for which, by abuse of notation, we write instead
p(x) wherever this is unambiguous. Similarly, let P (X = x, Y = y) ≡ p(x, y) be
the joint and P (Y = y|X = x) ≡ p(y|x) the conditional distribution.

2.2 Watson’s Regulatory Network scenario

One of the scenarios introduced by Watson is a (stochastical) dynamical system
which can be seen as a very simple model for a regulatory network [11]. Con-
sider thus a stochastic dynamical system of four random variables S1, S2, S3, S3,
each of them binary valued, i.e. Si ∈ {0, 1} for i ∈ {1, 2, 3, 4}. Write S =
(S1, S2, S3, S4) for the random variable denoting the complete system which
therefore can assume 16 states. Write S(t) for the whole system or Si(t) for a
single variable at a time t. Consider the dynamics

P
(

Si(t+ 1) = 1 | S(t) = s(t)
)

=
∑

j

wijsj(t) (1)

P
(

Si(t+ 1) = 0 | S(t) = s(t)
)

= 1− P
(

Si(t+ 1) = 1 | S(t) = s(t)
)

(2)

where wij is the weight by which the variable Sj influences Si. To guarantee
well-defined probabilistic expressions, the weights in Eq. (1) are normalized such
that

∑

j wij = 1. The discussion by Watson now strives to study the system as
composed of two subsystems (“modules”). He achieves this by splitting up the
system into two groups of variables (subsystems, “modules”),M1 = (S1, S2) and
M2 = (S3, S4) and using different coupling inside and between the subsystems.
Watson considers a system with wij = 4/10 if i and j belong to the same sub-
system (including i = j) and wij = 1/10 if they belong to different subsystems.
In this example, increasing coupling reinforces the probability that different Si
will assume the same state. Note that, although designed as two separate cou-
pled subsystems, the question arises here whetherM1 andM2 can be considered
separate subsystems from a dynamical point of view.
In principle, C = 4 states are possible for each of the subsystems M1 and

M2. Consider now only systems that converge into a fixed point attractor; there
might be several such attractors. Watson distinguishes three kinds of properties
for such a system: non-decomposability, separability and decomposability but no
separability. Watson concentrates on the subsystemM1 and asks about the “most
stable states”, i.e. the states ofM1 found if the entire system has converged to one
of its attractors. Paraphrased from [11], non-decomposability would mean that
“for every configuration of M1 there is some configuration of M2 (the remainder
of the system) that would make that configuration of M1 the most stable”.
In this case, there is a one-to-one relationship between the two subsystems

after convergence. Watson characterizes this case by the number C ′ of possible
states of M1 after the system has converged. In this case C

′ = C = 4, i.e. every
possible state of M1 can be an attractor, depending on the rest. A possible set
of attractors fulfilling this property could be a1 = (00 00); a2 = (01 01); a3 =
(10 10); a4 = (11 11) where the first two bits correspond to M1 and the last two
bits to M2. In the other extreme, separability, “the module is fully independent



in the property of interest” [11]. Watson characterizes this case of separablity
by the fact that M1 can only can have one single state (C

′ = 1). Indeed, in this
case (which means that all attractors of the total system are identical w.r.t. the
bits ofM1), the attractor state ofM1 does not depend at all onM2. An example
attractor set for this case would consist of a1 = (01 00) and a2 = (01 11), withM1

attaining a single value 01. Finally, the intermediate case of decomposability but
non-separability is now characterized by Watson via 1 < C ′ < C. An attractor
set showing this property would consist of a1 = (11 11) and a2 = (00 00) where
one has C ′ = 2. As Watson points out, one can see “that there is something we
know about the property of interest, the most stable configurations (00 or 11),
that is independent of inter-module interactions.” [11]

2.3 Open Problems

Although Watson’s method of counting the configurations of interest, i.e. the
attractors, has some attractive features, two problems remain: 1. The measure
is not continous; therefore continuous changes in coupling cannot be measured
appropriately. 2. As we will show in the following, the number C ′ does not always
correspond to an intuitive classification of separablity or (non-) decomposability.
Problem 2 can easily be seen by considering the following (not previously dis-
cussed) attractor structures:
Case 1: assume the two subsystems were not coupled at all and the correspond-
ing attractors are a1 = (00 00); a2 = (00 11); a3 = (11 00); a4 = (11 11) and
assumed with equal probability. As the attractors for the individual subsystems
are independent of each other, this should be ideally considered as separable; in
Watson’s framework, however, we have C ′ = 2, hence 1 < C ′ < C, and thus
the system is classified as decomposable but not separable. Case 2: Assume that
each module would converge into all of its 4 configurations. This would be e.g.
the case if each binary variable Si, i ∈ {1, 2, 3, 4} was only fed back to itself
in a positive way: Then all 16 combinations could be attractors for the total
system. For both modules we would observe C ′ = 4 classifying the system as
non-decomposable. Intuitively, however, we would classify the system as separa-
ble, again as there is no coupling at all between the individual variables and thus
between the subsystems.
In the following, we will suggest how to amend these misclassifications as well

as how to provide a continuous quantification of Watson’s modularity classes of
separablity, non-decomposability and decomposability but not separablity by using
concepts from information theory.

3 Quantification of Dynamical Modularity

3.1 Information-Theory: Notation

We need some further notions. Define the entropy of a random variable X
by H(X) = −

∑

x∈X p(x) log p(x) It denotes the expected uncertainty about



a single outcome of X [12]. If the logarithm is chosen w.r.t. base 2, the en-
tropy is quantified by bits; in the following, whereever this value vanishes, we
will interchangeably write 0 or 0 bit. Another important quantity is the condi-
tional entropy between two random variables X,Y which is given by H(Y |X) =
∑

x∈X p(x)H(Y |X = x) = −
∑

x∈X p(x)
∑

y∈Y p(y|x) log p(y|x) and quantifies
how much expected uncertainty in Y remains if X is known. The difference of
two related entropies often has the character of entropy or uncertainty loss,
or information gain. Specifically, the difference between H(Y ) and H(Y |X)
is known as the mutual information I(X;Y ) = H(Y ) − H(Y |X) and quanti-
fies how much the knowledge of X adds about the knowledge of Y . The mu-
tual information is symmetric in X and Y and the following relation holds:
I(X;Y ) = H(X) +H(Y )−H(X,Y ). We will use this relation later on.

3.2 An Intuitive Quantification

We will show that mutual information can serve as a modularity measure which is
both, intuitive and quantitative. Consider a system with fixed dynamics following
Eq. (1) and consider the random variables M1 and M2, denoting the first or
second subsystem, and taking on values {00, 01, 10, 11}. Now we measure the
coupling by considering the mutual information I(M1;M2) which replaces the
counting variable C ′ in Watson’s original model. We can now generalize Watson’s
modularity classes in the following definition.

Definition 1 (Generalized Modularity Classes). Consider a stochastic dy-
namical system and assume its attractor is split into an subsystem attractor
M1 and an attractor for the rest M2. Let I(M1;M2) be the mutual informa-
tion between the two attractor random variables. Then call M1 separable, if
I(M1;M2) = 0; non-decomposable, if I(M1;M2) = H(M1); decomposable but
not separable, if 0 < I(M1;M2) < H(M1)

Table 1 summarizes the cases we have considered so far. One observes that,
while the classification by counting (C ′) sometimes deviates from what one would
intuitively expect, modularity classification based on mutual information meets
intuition in all of the cases. It should be mentioned that I(M1;M2) does not mea-
sure modularity, but its opposite, coupling. A perfectly modular system would
be characterized by separability, i.e. I(M1;M2) = 0.

4 Experiments

It is instructive to see the operation of the measure from Def. 1 in the concrete
scenario. For this, consider the dynamical system Eq. (1). For didactical reasons,
we use coupling strengths different from [11]: we set wij = 1/N if i and j belong
to the same subsystem and wij = c/N if they belong to different subsystems
(with N = 2(1 + c) a normalization term); c ∈ [0, 1] is a dynamical coupling
strength between the subsystems — if c = 0, the subsystems are entirely uncou-
pled, if c = 1, there is no dynamical separation between the subsystems.



Scenario Intuitive
Classif.

C′ C′-Class. Entropies I(M1;M2) I-Class.

Selecting attrac-
tor state M2, one
can obtain any
attractor state
M1

non-
decomposable
(n.-d.)

4 n.-d. H(M1) = 2
H(M2) = 2
H(M1,M2) = 2

2 n.-d.

M1 can only con-
verge to one sin-
gle state

separable
(s.)

1 s. H(M1) = 0
H(M1,M2) = H(M2)

0 s.

M1 and M2 can
independently
converge to one
of two attractors
(Case 1)

separable
(s.)

2 d.b.n.s. H(M1) = 1
H(M2) = 1
H(M1,M2) = 2

0 s.

M1 and M2

converge to one
of two attrac-
tors, but not
independently

decomposable
but not sepa-
rable
(d.b.n.s)

2 d.b.n.s. H(M1) = 1
H(M2) = 1
0 < H(M1,M2) < 2

> 0
but
< 2

d.b.n.s.

Each bit behaves
independenlty
(Case 2)

separable
(s.)

4 n.-d. H(M1) = 2
H(M2) = 2
H(M1,M2) = 4

0 s.

Table 1. Summary of the different cases considered with the values for C ′ and
I(M1;M2) and the corresponding classifications. In contrast to the classification based
on C ′ (C′-Class), the mutual information I(M1;M2) (I-Class) classifies all of the cases
according intuition.

We run 100,000 independent simulations of the system for different values of
the coupling c obtaining empirical distributions for the attractors of the system
(as heuristics derived from experiments, we considered a state to be an attractor
and ended the run if the system stays in this state for 10 time steps). Several
mutual information quantities obtained for these states are shown in Fig. 1. The
results show that for small c also the dynamical coupling I(M1;M2) is small, as
expected, and it grows continuously with growing c (thus fulfilling the continuity
requirement from Sec. 2.3). It reaches a value close to 1 bit for c = 1 (the fully
coupled system) reflecting the fact that in this case the system ends mostly in the
equally distributed stochastic “attractors” S = (0, 0, 0, 0) and S = (1, 1, 1, 1)3.
In this case, we do not expect a natural split of the system in two subsystems.

Up to now we have always assumed that we do know the specific decom-
position of the system into subsystems by knowing the form of wij and the
particular structure of the network. However, our measure provides us with a

3 Because of finite-size effects in the dynamics of (1) and (2), other states are also
found with some small probability, thus for c = 1 the values for I(M1;M2) and
I(S1, S3;S2, S4) drop slightly below 1 bit.



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  0.2  0.4  0.6  0.8  1

PSfrag replacements

I(M1;M2)
I(S1, S3; S2, S4)
I(S1;S2)

c

I
(
.,
.)

Fig. 1. The plots show the dynamic coupling I(M1;M2) between the two subsystems,
depending on the coupling constant c (the x-axis); in addition, the mutual information
between the crosswise mixed system (S1, S3) and (S2, S4) as well as the mutual infor-
mation between the variables (S1, S2) inside the system M1 is shown. For details see
text.

way to separate the subsystems without using this knowledge. Plotting the mu-
tual information between alternative subsystems of S, Fig. 1 shows, e.g. the
crosswise mutual information I(S1, S3; S2, S4) arising from an alternative split
of S into subsystems. For small c, the value is almost 2 bit, far from 0, indicating
that this split does not provide natural modules4. On the other hand, once c be-
comes close to 1, this crosswise information converges towards the value of the
coupling information, indicating that the split into S1, S2 and S3, S4 becomes
indistinguishable from S1, S3 and S2, S4; this is expected, as for c = 1 both splits
are dynamically equivalent.

Another interesting measure is the intrinsic information in M1 = (S1, S2),
i.e. I(S1, S2). For c = 0, this becomes 1 bit indicating that the variables are
fully coupled in the subsystem. Increasing c first slightly reduces the coupling
as the subsystem is being perturbed, but then the overall dynamics “stiffens”
and again creates a correlation between the variables. However, when I(M1;M2)
grows, it indicates that modularity is increasingly lost. Once this value becomes
larger than I(S1, S2), M1 can be basically seen as having lost its identity as
a module, because the coupling between the module and its environment is
stronger than the intrinsic coupling. Other combinations can also be compared.
This illustrates how the information-theoretic measures provide a whole family
of useful characterizations of modularity.

4 For the extreme case c = 0, S1 is fully aligned with S2 and S3 with S4, thus
I(S1, S3; S2, S4) = 2 bit.



5 Applicability to Evolutionary Operators

To round up the argument, we will show that our concepts apply directly to issues
of modularity of indidivuals in Evolutionary Algorithms. To this purpose, we
consider a measure mjk(ψ) from [2, 4] which quantifies the modularity of mating
two individuals of given genotypes j ∈ S and k ∈ S, where S is the search space
and ψ is an equivalence relation (more details below). This formalism combines
the algebraic formalism from [13] with the dynamical system formalism from
[14] and has been used to study under which circumstances self-organization of
modularity occurs. In that formalism modularity is always considered w.r.t. a
specific equivalence relation5 ψ defined over the search space S. We will briefly
sketch the formalism and show how it fits neatly into the framework developed
in the earlier sections. Define then the modularity matrix element by

mjk(ψ) =
∑

i∈S

p(i|j, k) ri∼jk(ψ) . (3)

Here p(i|j, k) is the probability that crossover and mutation will generate an
offspring individual of type i by mating of individuals of types j and k6; ri∼jk
is a binary indicator variable describing whether i is equivalent to one of its
parents j or k, i.e. ri∼jk(ψ) = 1 if i ∼ψ j or i ∼ψ k and 0 else7. Thus, for
parents of types j and k, the quantity mjk(ψ) measures the expected degree to
which their offspring is equivalent to one of the parents (with respect to ψ). The
relation ψ can e.g. be used to model a number of relevant concepts, e.g. traits
(like certain phenotypical properties, size, strength, etc.) or schemata [15, 16]. It
is important to note that the formalism makes no assumption whatsoever about
the underlying variation operator(s) or about the representation, e.g. bit-strings,
GP-trees etc.
Consider now a simple example of a bitstring-based Genetic Algorithm and

two of the bits of the individuals, b(1) and b(2); the genotype of an individual
has therefore the following form: (. . . b(1) . . . b(2) . . .). Let an individual of type
j = (. . . 1 . . . 1 . . .) and an individual of type k = (. . . 0 . . . 0 . . .) be given. Let
furthermore ψ be the equivalence relation which declares two types equivalent
iff they are equal in both b(1) and b(2). Then mjk(ψ) becomes the probability
that an offspring individual looks completely like j or completely like k with
respect to these two bits: mjk(ψ) = p(. . . 0 . . . 0 . . . |j, k) + p(. . . 1 . . . 1 . . . |j, k).
Here, we consider a one-point crossover with 0 ≤ pcrossover ≤ 0.5 (for larger

crossover probabilities one experiences mirroring effects which we will ignore for
the discussion). If we assume symmetry in the variation (i.e. neither (. . . 0 . . . 0 . . .)
nor (. . . 1 . . . 1 . . .) is preferred by the variation), the definition of mjk(ψ) im-
mediately leads to p(. . . 0 . . . 0 . . . |j, k) = p(. . . 1 . . . 1 . . . |j, k) = 1

2mjk(ψ) and,

5 An equivalence relation is a relation ∼ (“equivalent to”) having the properties of
reflexivity (∀x : x ∼ x), symmetry (∀x, y : x ∼ y ⇔ y ∼ x) and transitivity
(∀x, y, z : x ∼ y ∧ y ∼ z ⇒ x ∼ z).

6 In [14] and [2, 4], p(i|j, k) is called the transmission function and written as T (i ←
j, k).

7 In [2, 4], this is denoted as rijk(ψ).
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Fig. 2. Relation between I(M1;M2) and mjk(ψ) in the example presented.

with similar assumptions, p(. . . 1 . . . 0 . . . |j, k) = p(. . . 0 . . . 1 . . . |j, k) = 1
2 (1 −

mjk(ψ)) holds. Most common crossover operators, as N -point-crossover or uni-
form crossover fulfill this requirement.
We now create the connection to the approach to measure modularity in

the dynamical system. Let B1 and B2 be the random variables associated to
the probabilities of values for the two bits b(1) and b(2). From the symmetry
assumptions, it is clear that

P (b(i) = 0) = P (b(i) = 1) = 0.5 i = 1, 2 (4)

and therefore H(B1) = H(B2) = 1. As the above equations show the joint distri-
bution of both bits depends on mjk(ψ), and thus the mutual information. Using
above relations for p(. . . 0 . . . 0 . . . |j, k) and p(. . . 1 . . . 0 . . . |j, k), the mutual in-
formation can be computed. The functional dependency between I(B1;B2) and
mjk(ψ) is shown in Fig. 2. It corresponds to the intrinsic information I(S1;S2)
from Sec. 4 which quantifies how strongly the variables of a specific subsystem are
coupled and shows that increasing modularity corresponds to stronger coupling
of the intrinsic variables. An information-theoretic measure for inter-module cou-
pling in that scenario can also be formulated, but it is more technically involved
and will have to be discussed elsewhere for lack of space.

6 Conclusion and Future Work

We have presented two different directions of thrust towards a formalization of
modularity. For this purpose, we have discussedWatson’s example of a dynamical
system and used information theory to obtain a generalized version of Watson’s
modularity classes. In particular, we were able to classify properly several cases
that are unintuitive under Watson’s C ′ counting approach. In addition, we were



able to reconstruct the modular structure of the regulatory network by looking
at the mutual information between different parts of the system (Fig. 1).
In the other line of thrust, we were able to create a connection between the

measure mjk(ψ) of modularity by which self-organized modularity in evolving
systems has been studied in earlier work and the information-theoretic picture
of dynamical systems modularity developed here. This indicates that the present
approach can be extended to become a powerful tool to establish when and how
modularity arises and, perhaps, to design Alife systems that are able to evolve
their own modular decompositions in a targeted manner and thus are able to
move more swiftly towards higher rungs in the ladder of complexity.
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