Abstract
This paper investigates genetic drift in multi-parent genetic algorithms (MPGAs). An exact model based on Markov chains is proposed to formulate the variation of gene frequency. This model identifies the correlation between the adopted number of parents and the mean convergence time. Moreover, it reveals the pairwise equivalence phenomenon in the number of parents and indicates the acceleration of genetic drift in MPGAs. The good fit between theoretical and experimental results further verifies the capability of this model.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Ninth Dover printing, Mineola (1972)
Asoh, H., Mühlenbein, H.: On the mean convergence time of evolutionary algorithms without selection and mutation. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 88–97. Springer, Heidelberg (1994)
Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, Heidelberg (1999)
Davis, T.E., Principe, J.C.: A markov chain framework for the simple genetic algorithm. Evolutionary Computation 1(3), 269–288 (1993)
Eiben, A.E.: Multiparent recombination in evolutionary computing. In: Advances in Evolutionary Computing, pp. 175–192. Springer, Heidelberg (2002)
Eiben, A.E., Rau’e, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recombination. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 78–87. Springer, Heidelberg (1994)
Eiben, A.E., van Kemenade, C.H.M.: Diagonal crossover in genetic algorithms for numerical optimization. Journal of Control and Cybernetics 26(3), 447–465 (1997)
Goldberg, D.E., Segrest, P.: Finite markov chain analysis of genetic algorithms. In: Proceedings of the 2nd International Conference on Genetic Algorithms and their Applications, pp. 1–8. Lawrence Erlbaum, Mahwah (1987)
Hartl, D.L., Clark, A.G.: Principles of Poppulation Genetics, 1st edn. Sinauer Associates (1989)
Horn, J.: Finite markov chain analysis of genetic algorithms with niching. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 110–117. Morgan Kaufmann Publishers, San Francisco (1993)
Nix, A.E., Vose, M.D.: Modeling genetic algorithms with markov chains. Annals of Mathematics and Artificial Intelligence 5, 78–88 (1992)
Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002) ISBN 0-07-048477-5
Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 5(1), 96–101 (1994)
Schippers, C.A.: Multi-parent scanning crossover and genetic drift. In: Theoretical Aspects of Evolutionary Computing, pp. 307–330. Springer, Heidelberg (2001)
Tsutsui, S., Ghosh, A.: A study on the effect of multi-parent recombination in real coded genetic algorithms. In: Proceedings of International Conference on Evolutionary Computation, pp. 828–833 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ting, CK. (2005). On the Mean Convergence Time of Multi-parent Genetic Algorithms Without Selection. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_41
Download citation
DOI: https://doi.org/10.1007/11553090_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28848-0
Online ISBN: 978-3-540-31816-3
eBook Packages: Computer ScienceComputer Science (R0)