Abstract
We compare the long term behaviour of Conway’s Game of Life cellular automaton, from initial random configurations, on a bounded rectangular grid and a bounded Penrose tiling grid. We investigate the lifetime to stability, the final ‘ash’ density, and the number and period of final oscillators. Penrose grids have similar qualitative behaviour but different quantitative behaviour, with shorter lifetimes, lower ash densities, and higher ocurrence of long-period oscillators.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays games in particular, vol. 2. Academic Press, London (1982)
Flammenkamp, A.: Achim’s game of life page (2004), http://wwwhomes.uni-bielefeld.de/achim/gol.html
Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American 223(4), 120–123 (1970)
Gardner, M.: Mathematical games: extraordinary non-periodic tiling that enriches the theory of tiles. Scientific American 236(1), 110–121 (1977)
Gosper, R.W.: Exploiting regularities in large cellular spaces. Physica D 10, 75–80 (1984)
Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman, New York (1987)
Penrose, R.: Pentaplexity. Eureka 39, 16–32 (1978)
Rendell, P.: Turing Universaility of the Game of Life. In: Adamatzky, A. (ed.) Collision-Based Computing. Springer, Heidelberg (2002)
Silver, S.: Life lexicon, release 24 (February 2005), http://www.argentum.freeserve.co.uk/lex.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hill, M., Stepney, S., Wan, F. (2005). Penrose Life: Ash and Oscillators. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_48
Download citation
DOI: https://doi.org/10.1007/11553090_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28848-0
Online ISBN: 978-3-540-31816-3
eBook Packages: Computer ScienceComputer Science (R0)