Abstract
Genetic regulatory networks (GRNs) control gene expression and are responsible for establishing the regular cellular patterns that constitute an organism. This paper introduces a model of biological development that generates cellular patterns via chemical interactions. GRNs for protein expression are generated and evaluated for their effectiveness in constructing 2D patterns of cells such as borders, patches, and mosaics. Three types of searches were performed: (a) a Monte Carlo search of the GRN space using a utility function based on spatial interestingness; (b) a hill climbing search to identify GRNs that solve specific pattern problems; (c) a search for combinatorial codes that solve difficult target patterns by running multiple disjoint GRNs in parallel. We show that simple biologically realistic GRNs can construct many complex cellular patterns. Our model provides an avenue to explore the evolution of complex GRNs that drive development.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stanley, K., Mikkulainen, R.: A Taxonomy For Artificial Embryogeny. Artificial Life 9(2), 93–130 (2003)
Lindenmayer, A.: Mathematical Models For Cellular Interaction In Development: Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)
Gruau, F.: Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm. Doctoral dissertation, Ecole Normale Superieure de Lyon, France (1994)
Gruau, F., Whitley, D., Pyeatt, L.: A Comparison Between Cellular Encoding And Direct Encoding For Genetic Neural Networks. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 81–89. MIT Press, Cambridge (1996)
Hogeweg, P.: Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64, 97–109 (2002)
Astor, J.S., Chris Adami, C.: A Developmental Model for the Evolution of Artificial Neural Networks. Journal of Artificial Life 6(3), 189–218 (2000)
Turing, A.: The Chemical Basis Of Morphogenesis. Philosophical Transactions of the Royal Society B 237, 37–72 (1952)
Fleischer, K., Barr, A.H.: A Simulation Testbed For The Study Of Multicellular Development: The Multiple Mechanisms Of Morphogenesis. In: Langton, C.G. (ed.) Artificial life III, pp. 389–416. Addison-Wesley, Reading (1993)
Mjolsness, E., Sharp, D.H., Reinitz, J.: A Connectionist Model Of Development. Journal of Theoretical Biology 152, 429–453 (1991)
Kaneko, K., Furusawa, C.: Emergence Of Multicellular Organisms With Dynamic Differentation And Spatial Pattern. Artificial Life 4, 77–93 (1998)
Federici, D.: Using Embryonic Stages To Increase The Evolvability Of Development. In: Proceedings of WORLDS Workshop on Regeneration and Learning in Developmental Systems (hosted by GECCO) (2004)
Roggen, D., Federici, D.: Multi-Cellular Development: Is There Scalability And Robustness To Gain? In: Proceedings of PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature, pp. 391–400 (2004)
von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The Segment Polarity Network is a Robust Developmental Module. Nature 406, 188–192 (2000)
Hilderman, R.J., Hamilton, H.J.: Heuristics For Ranking the Interestingness Of Discovered Knowledge. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 204–210. Springer, Heidelberg (1999)
Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.: CompuCell, a Multi-Model Framework For Simulation Of Morphogenesis. Bioinformatics 20, 1129–1137 (2004)
Bongard, J.C.: Evolving Modular Genetic Regulatory Networks. In: Proceedings of the IEEE 2002 Congress on Evolutionary Computation (CEC2002), pp. 1872–1877. IEEE Press, Los Alamitos (2002)
Taylor, T.: A Genetic Regulatory Network-Inspired Real-Time Controller For a Group Of Underwater Robots. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Kröse, B. (eds.) Intelligent Autonomous Systems 8 (Proceedings of IAS8), pp. 403–412. IOS Press, Amsterdam (2004)
Lawrence, P.A.: The Making Of a Fly. Blackwell Scientific Publications, Oxford (1992)
Shvartsman, S.Y., Muratov, C.B., Lauffenburger, D.A.: Modeling And Computational Analysis Of EGF Receptor-Mediated Cell Communication In Drosophila Oogenesis. Development 129, 2577–2589 (2002)
Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H.: Pattern Formation By Lateral Inhibition With Feedback: A Mathematical model Of Delta-Notch Intercellular Signalling. J. Theor. Biol. 183, 429–446 (1996)
Mochizuki, A.: Pattern Formation Of the Cone Mosaic In the Zebrafish Retina: A Cell Rearrangement Model. J. Theor. Biol. 215, 345–361 (2002)
Skeath, J.B.: At the Nexus Between Pattern Formation And Cell-Type Specification: the Generation Of Individual Neuroblast Fates In The Drosophila Embryonic Central Nervous System. Bioessays 212, 922–931 (1999)
Jessell, T.M.: Neuronal Specification In the Spinal Cord: Inductive Signals And Transcriptional Codes. Nat. Rev. Genet. 1, 20–29 (2000)
Cook, J.E., Chalupa, L.M.: Retinal Mosaics: New Insights Into An Old Concept. TINS 23, 26–35 (2000)
Atabef, M., Clarke, J.D.W., Ticle, C.: Dorso-Ventral Ectodermal Compartments and the Origin of Apical Ectodermal Ridge in Developing Chick Limb. Development 124, 4547–4556 (1997)
Gossler, A., de Angelis, M.H.: Somitogenesis. Curr. Top. Dev. Biol. 38, 225–287 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Flann, N., Hu, J., Bansal, M., Patel, V., Podgorski, G. (2005). Biological Development of Cell Patterns: Characterizing the Space of Cell Chemistry Genetic Regulatory Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_7
Download citation
DOI: https://doi.org/10.1007/11553090_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28848-0
Online ISBN: 978-3-540-31816-3
eBook Packages: Computer ScienceComputer Science (R0)