Skip to main content

A Coarse-Coding Framework for a Gene-Regulatory-Based Artificial Neural Tissue

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

A developmental Artificial Neural Tissue (ANT) architecture inspired by the mammalian visual cortex is presented. It is shown that with the effective use of gene regulation that large phenotypes in the form of Artificial Neural Tissues do not necessarily pose an impediment to evolution. ANT includes a Gene Regulatory Network that controls cell growth/death and activation/inhibition of the tissue based on a coarse-coding framework. This scalable architecture can facilitate emergent (self-organized) task decomposition and require limited task specific information compared with fixed topologies. Only a global fitness function (without biasing a particular task decomposition strategy) is specified and self-organized task decomposition is achieved through a process of gene regulation, competitive coevolution, cooperation and specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S.: A theory of cerebellar function. Mathematical Biosciences, 25–61 (1971)

    Google Scholar 

  2. Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural networks. ALife 6(3), 189–218 (2000)

    Google Scholar 

  3. Ballard, D.H.: Cortical Connections and parallel processing. The Behavioural and Brain Sciences 9, 279–284 (1986)

    Google Scholar 

  4. Deneubourg, J.-L.: Application de l’ordre par fluctuations ‘a la description de certaines ’etapes de la construction du nid chez les termites. Insectes Sociaux, 117–130 (1977)

    Google Scholar 

  5. Eggenberger, P., et al.: Evolving the orphology of a neural net for controlling a foveating retina. ALife 8, 243–251 (2002)

    Google Scholar 

  6. Eggenberger, P.: Evolving Morphologies of simulated 3d organism based on Differential Gene Expression. In: Proc. 4th European Conference on ALife (1997)

    Google Scholar 

  7. Gruau, F.: Automatic definition of modular neural networks. Adaptive Behaviours 3, 151–183 (1994)

    Article  Google Scholar 

  8. Gustafson, S., et al.: Problem Difficulty and Code Growth in Genetic Programming. Genetic Programming and Evolvable Machines 5, 271–290 (2004)

    Article  Google Scholar 

  9. Hinton, G.: Shape Representation in Parallel Systems. In: Proc. of 7th Int. Joint Conf. on Artificial Intelligence, pp. 1088–1096 (1981)

    Google Scholar 

  10. Hinton, G.: Product of Experts. In: Proc. of the 9th Int. Conf. on Artificial Neural Nets, vol. 1, pp. 1–6 (1999)

    Google Scholar 

  11. Hornby, G., Pollack, J.: Creating High-Level Components with a Generative Representation for Body-Brain Evolution. ALife 8 (2002)

    Google Scholar 

  12. Jacobs, R., Jordan, M., Barto, A.: Task decomposition through competition in a modular connectionist architecture. Cognitive Science (15), 219–250 (1991)

    Google Scholar 

  13. Stanley, K., Miikkulainen, R.: Continual Coevolution through Complexification. In: Proc. of the Genetic and Evolutionary Computation Conf. 2002 (2002)

    Google Scholar 

  14. Stanley, K., Miikkulainen, R.: A taxanomy for aritificial embrogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  15. Sims, K.: Evolving 3D Morphology and Behavior by Competition. In: Proc. of Artificial Life IV, pp. 28–39. MIT Press, Cambridge (1994)

    Google Scholar 

  16. Langdon, W.: Quadratic bloat in genetic programming. In: Proc. of Genetic and Evolutionary Comp. Conf. (2000)

    Google Scholar 

  17. Liu, Y., Yao, X., Higuchi, T.: Evolutionary Ensembles with Negative Correlation Learning. IEEE Transactions on Evolutionary Computation 4, 380–387 (2000)

    Article  Google Scholar 

  18. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines, pp. 13–15. MIT Press, Cambridge (2000)

    Google Scholar 

  19. Roggen, D., Floreano, D., Mattiussi, C.: A Morphogenetic Evolutionary System: Phylogenesis of the POEtic Tissue. In: Int. Conf on Evolvable Systems, pp. 153–164 (2003)

    Google Scholar 

  20. Roggen, D., Federici, D.: Multi-cellular Development: Is There Scalability and Robustnes to Gain? In: Proc. of Parallel Problem Solving from Nature, pp. 391–400 (2004)

    Google Scholar 

  21. Thangavelautham, J., D’Eleuterio, G.M.T.: A Neuroevolutionary Approach to Emergent Task Decomposition. In: Proc. of 8th Parallel Problem Solving from Nature, pp. 991–1000 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thangavelautham, J., D’Eleuterio, G.M.T. (2005). A Coarse-Coding Framework for a Gene-Regulatory-Based Artificial Neural Tissue. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_8

Download citation

  • DOI: https://doi.org/10.1007/11553090_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics