Skip to main content

Growing Biochemical Networks: Identifying the Intrinsic Properties

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

  • 1888 Accesses

Abstract

How can a new incoming biological node measure the degree of nodes already present in a network and thus decide, on the basis of this counting, to preferentially connect with the more connected ones? Although such explicit comparison and choice is quite plausible in the case of man-made networks, like Internet, leading the network to a scale-free topology, it is much harder to conceive for biochemical networks. The computer simulations presented in this article try to respect simple and, as far as possible, basic biological characteristics such as the heterogeneity of biological nodes, the existence of natural hubs, the way nodes bind by mutual affinity, the significance of type-based network as compared with instance-based one and the consequent importance of the nodes concentration to the selection of the partners of the incoming nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Ferrer i Cancho, C., Janssen, R., Solé, R.V.: The topology of technology graphs: small world pattern in electronic circuits. Phys. Rev. E 63, 32767 (2001)

    Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Dorogovtsev, D., Mendes, J.F.F.: Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  6. Solé, R.V., Pastor-Satorras, R., Smith, E., Kepler, T.: A model of large-scale proteome evolution. Adv. Complex Syst. 5, 43–54 (2002)

    Article  MATH  Google Scholar 

  7. Strogatz, S.: Exploring Complex Networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  8. Barabási, L.-A., Oltvai, Z.N.: Network Biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5, 101–113 (2004)

    Article  Google Scholar 

  9. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organisation of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  10. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomes cerevisiaie. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  11. Vazquez, A., Flamimi, A., Maritan, A., Vespignani, A.: Modeling of Protein Interaction Networks. ComplexUs 1, 38–44 (2003)

    Article  Google Scholar 

  12. Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. B. 268, 1803–1810 (2001)

    Article  Google Scholar 

  13. Wagner, A.: How the global structure of protein interaction networks evolve. Proc. R. Soc. London B 270, 457–466 (2003)

    Article  Google Scholar 

  14. Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)

    Article  Google Scholar 

  15. Temkin, O.N., Zeigarnik, A.V., Bonchev, D.: Chemical reaction networks: a graph-theoretical approach. CRC Press, Boca Raton (1996)

    Google Scholar 

  16. Vogelstein, B., Lane, D., Levine, A.J.: Surfing the p53 network. Nature 408, 307–310 (2000)

    Article  Google Scholar 

  17. Bersini, H.: Immune Network and Adaptive Control. In: Proceedings of the first European Conference on Artificial Life, Toward a Practice of Autonomous Systems, Varela, Bourgine, pp. 217–225. MIT Press, Cambridge (1993)

    Google Scholar 

  18. De Boer, R.J., Perelson, A.S.: Size and Connectivity as Emergent Properties of a Developing Immune Network Journal of Theor. Biology 149, 381–424 (1991)

    Google Scholar 

  19. Detours, V., Bersini, H., Stewart, J., Varela, F.: Development of an Idiotypic Network in Shape Space. Journal of Theor. Biol. 170, 401–404 (1994)

    Article  Google Scholar 

  20. Varela, F., Coutinho, A.: Second Generation Immune Network. Immunology Today 12(5), 159–166 (1991)

    Google Scholar 

  21. Thomas, A., Cannings, R., Monk, N.A.M., Cannings, C.: On the structure of protein interaction networks. Biochem. Soc. Trans. 31, 1491–1496 (2003)

    Article  Google Scholar 

  22. Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: Sampling properties of networks. PNAS 102(12), 4221–4224 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bersini, H., Lenaerts, T., Santos, F.C. (2005). Growing Biochemical Networks: Identifying the Intrinsic Properties. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_87

Download citation

  • DOI: https://doi.org/10.1007/11553090_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics