Abstract
Efficient hierarchical architectures for reconfigurable and adaptive multi-agent networks require dynamic cluster formation among the set of nodes (agents). In the absence of centralised controllers, this process can be described as self-organisation of dynamic hierarchies, with multiple cluster-heads emerging as a result of inter-agent communications. Decentralised clustering algorithms deployed in multi-agent networks are hard to evaluate precisely for the reason of the diminished predictability brought about by self-organisation. In particular, it is hard to predict when the cluster formation will converge to a stable configuration. This paper proposes and experimentally evaluates a predictor for the convergence time of cluster formation, based on a regularity of the inter-agent communication space as the underlying parameter. The results indicate that the generalised “correlation entropy” K 2 (a lower bound of Kolmogorov-Sinai entropy) of the volume of the inter-agent communications can be correlated with the time of cluster formation, and can be used as its predictor.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dhamala, M., Lai, Y.C., Kostelich, E.J.: Analyses of transient chaotic time series. Physical Review E 64(056207), 1–9 (2001)
Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: The 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)
Foreman, M., Prokopenko, M., Wang, P.: Phase Transitions in Self-organising Sensor Networks. In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 781–791. Springer, Heidelberg (2003)
Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Physical Review A 28(4), 2591 (1983)
Grassberger, P., Procaccia, I.: Characterization of strange attractors. Physical Review Letters 50, 346–349 (1983)
Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden Braid. Vintage Books, New York (1989)
Jánosi, I.M., Tél, T.: Time series analysis of transient chaos. Physical Review E 49(4), 2756–2763 (1994)
Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Doklady Akademii Nauk SSSR 119, 861–864 (1958) (Russian)
Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Doklady Akademii Nauk SSSR 124, 754–755 (1959) (Russian)
Lin, R., Gerla, M.: Adaptive Clustering for Mobile Wireless Networks. IEEE Journal on Selected Areas in Communications, 1265–1275 (September 1997)
Mahendra rajah, P., Prokopenko, M., Wang, P., Price, D.C.: Towards adaptive clustering in self-monitoring multi-agent networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 796–805. Springer, Heidelberg (2005)
Ogston, E., Overeinder, B., Van Steen, M., Brazier, F.: A Method for Decentralized Clustering in Large Multi-Agent Systems. In: The 2nd International Joint Conference on Autonomous Agent and Multi Agent Systems, pp. 798–796 (2003)
Price, D.C., Scott, D.A., Edwards, G., Batten, A., Farmer, A.J., Hedley, M., Johnson, M., Lewis, C., Poulton, G., Prokopenko, M., Valencia, P., Wang, P.: An Integrated Health Monitoring System for an Ageless Aerospace Vehicle. In: 4th Int’l Workshop on Structural Health Monitoring, Stanford (2003)
Prokopenko, M., Wang, P., Price, D.C., Valencia, P., Foreman, M., Farmer, A.J.: Self-organising Hierarchies in Sensor and Communication Networks. To appear in Artificial Life. Special issue on Dynamic Hierarchies (2005)
Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for Dynamical Hierarchies. Artificial Life 7, 4 (2001)
Rényi, A.: Probability theory. North-Holland, Amsterdam (1970)
Sandholm, T., Lesser, V.: Coalition Formation among Bounded Rational Agents. In: The 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, Canada, pp. 662–669
Sinai, Ya.G.: On the concept of entropy of a dynamical system. Doklady Akademii Nauk SSSR 124, 768–771 (1959) (Russian)
Takens, F.: Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. LNM, vol. 898. Springer, Berlin (1981)
Takens, F.: Invariants related to dimension and entropy. Atas do 13 Colóquio Brasiliero do Matemática, Rio de Janeiro (1983)
Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Physical Review A 34(3), 2427–2432 (1986)
Theiler, J.: Estimating fractal dimension. J. of the Optical Society of America A 7(6), 1055 (1990)
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH:A New Data Clustering Algorithm and Its Applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prokopenko, M., Rajah, P.M., Wang, P. (2005). On Convergence of Dynamic Cluster Formation in Multi-agent Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_89
Download citation
DOI: https://doi.org/10.1007/11553090_89
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28848-0
Online ISBN: 978-3-540-31816-3
eBook Packages: Computer ScienceComputer Science (R0)