
On the Unit of Selection in Sexual Populations 

Richard A. Watson 

School of Electronics and Computer Science, University of Southampton, SO17 1BJ. U.K. 
raw@ecs.soton.ac.uk 

Abstract. Evolution by natural selection is a process of variation and selection 
acting on replicating units. These units are often assumed to be individuals, but 
in a sexual population, the largest reliably-replicated unit on which selection 
can act is a small section of chromosome – hence, the ‘selfish gene’ model. 
However, the scale of unit at which variation by spontaneous mutation occurs is 
different from the scale of unit at which variation by recombination occurs. I 
suggest that the action of recombinative variation and mutational variation to-
gether can enable local optimization to occur at two different scales simultane-
ously. I adapt a recent model illustrating a benefit of sexual recombination to il-
lustrate conditions for two scales of optimization in natural populations, and 
show that the operation of natural selection in this scenario cannot be under-
stood by considering either scale alone. 

1   Nucleotides, genes, and individuals 

Although it is often convenient when providing evolutionary explanation to suppose 
that selection acts on individual organisms, in fact, in sexual populations the combina-
tion of alleles represented in an individual’s genotype is not reliably transferred to its 
offspring [1][2]. In sexual populations the largest unit of genetic material that repro-
duces with reliable fidelity is a subsection of chromosome small enough to avoid be-
ing disrupted by crossover. The size of these units will be determined by the crossover 
rate1, with higher rates defining smaller units, but for common purposes it is taken that 
the relevant unit is about the size of individual genes [1]. Accordingly, since the gene 
is the largest genetic unit that reproduces reliably, the gene is the largest unit on which 
natural selection can act [1] – hence, the well-known “selfish gene” framework [2]. 
These observations support fundamental axioms underlying the way evolution is de-
fined, i.e. the change in frequencies of alleles in a gene pool [3], placing attention on 
the frequencies of individual alleles, not the frequencies of genotypes. Although the 
selective unit might seem unambiguous in evolutionary algorithms because evaluation 
is always applied to individuals and individual fitnesses determine reproduction, in 
fact the same issues apply if sexual recombination, or crossover, is used. Although 
individuals are selected to reproduce, the genetic material of individuals is broken-up 
by crossover, so it is only fragments of individuals whose frequencies can be affected 
by selection – hence, attention on “schema” in evolutionary computation theory [4].  
                                                           
1  The probability of recombining adjacent loci (not the probability that crossover is applied to 

an individual, as sometimes meant in evolutionary computation). See C in Table 1.  



Biologically, the genes on which selection acts may consist of thousands of nucleo-
tides. New variants of genes (new alleles) are introduced by spontaneous point muta-
tion affecting one or a small number of individual nucleotides within a gene. Accord-
ingly, the scale of unit that is manipulated by mutation (individual nucleotides) is quite 
a different scale of unit from that which is manipulated by recombination (alleles of 
genes). However, since selection acts on whole alleles it is common in population 
genetics models to abstract away the nucleotide-level details and simply refer to the 
variant alleles of a gene by unique labels, e.g. A and a. Each allele label represents a 
different combination of maybe thousands of nucleotides, but if one allele is produced 
by mutation of the other, then they may differ in only a few nucleotide substitutions. 
This abstraction of the internal detail, hiding the level of individual nucleotides on 
which mutation acts, is appropriate for some purposes. Indeed, it sufficed perfectly 
well for all the population genetic results derived prior to the discovery of the molecu-
lar structure of DNA [5]. Historically, an allele is simply defined as a particulate unit 
of Mendelian inheritance (thus being intimately linked to the action of recombination), 
and the fact that, on a molecular basis, each consisted of thousands of nucleotides was 
not known. Following conventional population genetic models, evolutionary computa-
tion models [4] used in artificial life rarely make the distinction between genes and 
nucleotides. Individuals are generally modelled as binary strings where each bit is 
taken to be synonymous with the allele of a gene at a particular locus and mutation 
changes the bit between one allele and the other, 0 or 1, standing in for A and a. The 
problem is that this abstraction is not consistent with a model of a gene containing a 
thousand nucleotides and 41000 different alleles – consider the probability of a rever-
sion, or “back mutation”, for example, or more generally, the probability of finding a 
particular allele by random mutation. This inconsistency can cause more than a mere 
terminological problem, especially in cases where mutation and recombination are 
applied together.  

So, in population genetics and in evolutionary computation, does it matter whether 
genes are modelled as collections of nucleotides or simply abstracted into particulate 
alleles? There are many scenarios, lying within common assumptions, where it does 
not. But there are other scenarios that are biologically plausible where it does matter. 
The aim of this paper is to discuss the conceptual issues involved and examine the 
implications of moving outside common assumptions. I use some simulation results as 
an example just to illustrate some of the salient points.  My claim is that existing defi-
nitions of the unit of selection and common simplifying assumptions preclude some 
interesting phenomena, and more specifically, that it is necessary in some cases to 
recognise more than one level of optimisation to understand the action of evolutionary 
systems. Cases (like those examined here) that step outside the usual simplifying as-
sumptions are necessary for understanding the operation of evolution in natural popu-
lations. They are also necessary for understanding how to use and model evolution in 
artificial life experiments, and in addressing the complex relationship that these obser-
vations have to concepts of the unit of selection and related processes such as Shifting 
Balance Theory [6].  

The following two sections introduce the basic ideas about why two levels of opti-
misation may be required to find fit genotypes in a fitness landscape, and how this 
might be provided. Section 4 describes a set of simulation experiments to illustrate the 



effect of changing the scales at which optimisation is applied. Specifically, I show that 
optimisation at any one scale is insufficient to find fit genotypes, and a combination of 
optimisation scales is required. I illustrate two different ways in which these two 
scales can be provided, but the main idea is that mutation manipulates the nucleotides 
and recombination manipulates the alleles of genes. The quite simple idea that muta-
tion and recombination afford local optimisation in different spaces by operating on 
different units motivates a rethink about simplistic notions of the unit of selection. 

2   Background: selective units and local optima 

I suggested above that there are evolutionary scenarios that afford optimisation on 
some unit of genetic material and also on combinations of that unit: specifically, nu-
cleotides and combinations of nucleotides (i.e. alleles of genes). The consequences of 
this are the same for other scales of units, for example, alleles and combinations of 
alleles. In fact, discussion about the possibility of selection on combinations of alleles 
has quite a history in population genetics and we can use this to better understand the 
implications of having optimisation occur at the lower scales of nucleotides and com-
binations of nucleotides.  

If selection acts on individual units (of whatever scale), then this has important 
consequences for what evolution by natural selection can and cannot do. If selection 
acts on individual units, then evolution can only respond to the net fitness effects of 
individual units. Although a piece of genetic material like an allele may have different 
fitness effects in different genetic backgrounds, the change in frequency of that unit 
over several generations cannot be controlled by its fitness in any particular back-
ground in a sexual population (as its presence in a given background is not reliably 
reproduced). Instead, Fisher argues, the change in frequency of an allele will be con-
trolled by its average fitness excess [7], roughly, its average fitness effect over the 
backgrounds in which it occurs. A consequence of selection on the average effect of 
individual units is that if a particularly fit combination of units involves units that are 
individually disfavoured then, even if that combination should happen to arise in some 
individual, it cannot take hold in the population.  

A particular instance of this may occur when a population is stuck at a local fitness 
peak in a fitness surface. Consider a genotype A that is locally optimal and a second 
genotype B that is fitter. All single allele substitutions to A are deleterious (by the 
definition of being locally optimal) so B (necessarily) differs from A by several allelic 
substitutions. These allelic differences are thus collectively favourable but individu-
ally unfavourable to a genotype at A. Since sexual recombination re-assorts alleles into 
the different genetic backgrounds of other individuals in the population, even if such a 
combination of alleles were introduced to an individual in a population located at A, 
selection would act on the alleles individually and remove them from the population. 
Sewell Wright considered the escape from a local fitness peak to a genotype of higher 
fitness to be the central problem of evolution [8], and devised Shifting Balance The-
ory, SBT, [6] to explain how population subdivision might enable an evolving popula-
tion to achieve this. However, some consider the conditions for SBT to not be widely, 
if at all, available in natural populations [9]. 



Actually, it would be easy to facilitate selection on combinations of alleles if the 
crossover rate could be modified. That is, if the crossover rate were very low then 
alleles would not assort independently and would instead be selected as a unit, and in 
the limit, the entire genotype of an asexual individual replicates as a whole. If an 
asexual population was centred on A, and the combination of alleles required to reach 
B were introduced to an individual in the population, then selection would have no 
problem in promoting the resultant B genotype to take over in the population. But 
selection on combinations of alleles has its disadvantages as well. In some circum-
stances it can be favourable to have selection act on the average fitness effect of indi-
vidual alleles rather than on combinations of alleles. For example, when a sub-optimal 
combination of alleles arises in a genotype, containing some favourable alleles and 
some disfavoured alleles, an asexual population is unable to promote the good alleles 
without also promoting the bad alleles. This is the basis of the classic Fisher/Muller 
model for the benefit of sexual recombination [7]. In short, in some circumstances it is 
preferable to have selection act on individual units and in others it is preferable to 
have selection act on combinations of units. The former cannot select for good 
combinations of units unless they involve only units which are also individually good, 
and the latter cannot select for good individual units unless they are in a collectively 
good combination of units. 

Fisher and Wright were concerned with the action of selection on alleles and com-
binations of alleles, but here we are concerned (for the most part) with nucleotides and 
combinations of nucleotides (alleles). The same reasoning applies: in some cases 
selection on individual nucleotides may be beneficial, and in others selection on al-
leles may be beneficial. In natural populations, it does not make sense to imagine that 
recombination rates are so high that selection acts on individual nucleotides. But I will 
argue that mutation effects local optimisation in nucleotide sequence space, and that 
if, at the same time, recombination is manipulating whole alleles, then this can effect a 
two-level process of optimisation. Such a scenario is precluded in prior models by 
common assumptions about the epistasis model, and also by the abstraction of nucleo-
tide combinations into particulate alleles. In the next section I clarify what I mean by 
local optimisation and the different ways that evolving populations can provide it.  

3. Modes of local optimisation 

Given a combinatorial search space <u1,u2,u3,…uN> (where each point in the space is a 
combination of values for each of the units u1 to uN) local optimisation involves the 
movement of a point through this space where successive points are neighbouring or 
nearby. For example, hill climbing optimisation follows trajectories formed by moving 
to adjacent points that are higher in fitness. An evolving population is often conceived 
as a hill climbing process. However, there are two qualitatively different means by 
which this may be provided in evolution by natural selection (one being more common 
in evolutionary computation and the other being more common in population genetics) 
and these are often not distinguished properly: I call these local mutation and direct 
selection. Fig.1a. illustrates local mutation as provided by, for example, an asexual 
population with a low rate of spontaneous point mutation on nucleotides. Here, al-



though selection promotes entire genotypes, mutation modifies one or a small number 
of nucleotides (e.g. third locus) enabling only local movement in the combinatorial 
space of nucleotides. This maps very naturally to bit-mutation hill climbers used in 
computational optimisation. Fig.1.b. illustrates local optimisation via direct selection 
on individual units as provided by, for example, a sexual population that exhibits free 
recombination between alleles (that is, alleles assort independently during sexual 
reproduction). In this case, an evolving population can (with some simplifying as-
sumptions about linkage equilibrium [10] and epistasis) be usefully described as a 
point in allele frequency space [8]. If selection acting on individual units makes small 
adjustments to the frequencies of these units, then the population has performed local 
movement in this space. This sense of local optimisation is the normal interpretation 
of evolution in population genetics models (though not with all the same terminology).  
 

Fig. 1. Rows are individuals in a population; boxes show units of genetic material; 
braces show selection pools. a) local mutation. b) direct selection. c) see text. 

Formally, local mutation and direct selection move in different spaces, genotype 
sequence space and allele frequency space, respectively. But note that genotype se-
quence space is coincident with the vertices of allele frequency space (i.e. points 
where frequencies are either 1 or 0). The more important difference is that the units in 
the natural interpretation of local mutation (in the post-molecular-genetics era) are 
nucleotides, whereas the units in the natural interpretation of direct selection are al-
leles (Mendelian units of inheritance). If the units that the two mechanisms manipulate 
are not the same scale then this makes a profound difference in the ‘locality’ of the 
spaces in which this optimisation occurs. Although local optimisation at any scale can 
become stuck on local optima at that scale, local optimisation at different scales ‘sees’ 
different fitness landscapes, different fitness gradients, and different local optima. 

Unlike Fig. 1b where alleles are abstract, Fig. 1c illustrates alleles that are each 
composed of many nucleotides. Here if variation introduces new alleles that differ by 
only one nucleotide (left of Fig. 1c) then we still have local optimisation at the nucleo-
tide scale. In contrast, if variation introduces completely new alleles (right of Fig. 1c), 
this effects local optimisation at the allele scale but not at the nucleotide scale. A 
combination of mutation on nucleotides and recombination of whole alleles has the 
potential to provide optimisation at two different scales simultaneously, and when the 
local optima of one scale are different from those of the other scale, the interaction of 
the two can provide optimisation that neither one scale can provide alone. 
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4. Examining a model landscape  

The consequences of optimisation at more than one scale will only be seen if we re-
move common simplifying assumptions about epistasis that would cause local optima 
at different scales to be coincident. Previous work [11] described a fitness landscape 
designed to illustrate a benefit of sexual recombination that is well suited for our pur-
poses here. This work showed that a subdivided sexual population can discover the 
highest fitness genotypes of this landscape easily, but an asexual population (under the 
same conditions) cannot. In this paper I use this model to demonstrate that there are 
two levels of optimisation involved in this effect by explicitly examining the local 
mutation and direct selection mechanisms at the levels of nucleotides and alleles. 

In this model a genotype consists of two genes each containing many nucleotides. 
The epistasis in the model has strong ‘synergy’ of good mutations within a gene, and 
also a general field of random epistatic interactions among all mutations. The fitness 
of a genotype is given by:2 

 f(G)=Rij(2
-i+2-j)     (1) 

where i is the mutational (Hamming) distance of one of the genes (the first half of 
the genotype, {g1,g2,…,gn}) from an ideal allele, and j is the mutational distance from 
an ideal allele in the other gene (the second half of the genotype {gn+1,gn+2,…,g2n}), 
and each Rij is a random value drawn uniformly in the range [0.5,1] (for one instance 
of this random landscape, each Rij is a constant). The basic form of modularity used 
here, where genes are constituted by a large number of nucleotide sites that are 
grouped both functionally (with epistasis) and physically (by location on the chromo-
some), is also seen in natural systems where the nucleotides of a gene are grouped 
functionally and physically by virtue of the transcription and translation machinery. 
Without loss of generality, the maximum fitness allele for each gene can be that where 
all nucleotides are 1s, and the maximum fitness genotype is that where both genes 
have their maximum fitness alleles, i.e. the all-1s genotype. This function can be con-
veniently drawn as a two dimensional fitness landscape where the two axes are the 
number of 1s in each of the two genes (Fig. 2). 

The idea behind this model is that mutation will search locally to find good combi-
nations of nucleotides within each gene, and crossover will make new combinations of 
alleles to bring these the two good alleles together and hence find fit genotypes. This 
is a simple idea but it is worth pointing out that in most cases over-simplistic assump-
tions about epistasis preclude the need for a two-level description of the evolutionary 
process, even if the two processes are available. That is, in simple landscapes, if selec-
tion can find good alleles by finding good nucleotide mutations, then fit genotypes can 
be found by simply doing more of this, i.e. finding the good nucleotide mutations in 
all genes. However, in this landscape, it is easy to find the best allele for gene 1 by 
accumulating beneficial mutations only when gene 2 is not yet well optimised, and 
vice versa. Once either of the genes becomes well optimised it then becomes difficult 
to find the best allele for the second gene without disrupting the fitness contributions 

                                                           
2  This is modified to keep the maximum fitness value to be 3 (and make it insensitive to n, the 

number of nucleotides per gene) but the original shape of the function is retained.  



of the first. This can be seen by considering the problem of escaping the local optima 
in the fitness ridges shown at the back of Fig. 2 (left). Specifically, each local opti-
mum shown is a local optimum in nucleotide sequence space, so although it is easy to 
find a good combination of nucleotides for either gene by selecting on nucleotides, it 
is not the case that continued selection on individual nucleotides will find the fittest 
genotypes. 
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Fig. 2. The fitness landscape defined by Equation 1. 

left) as seen by nucleotide variation, right) as seen by combinations of good and bad alleles. 
 

Thus local optimisation on nucleotides will easily find a good allele for one of the 
genes but will then be stuck on a local optimum. In a subdivided population different 
demes may find individuals on different local peaks, some having optimised gene-1 
(but not gene-2) and others having optimised gene-2 (but not gene-1). But that is as far 
as it goes with optimisation only on nucleotides – to the nearest peak in nucleotide 
sequence space (Fig. 2. left). Additional selection on the allele scale, (taking the good 
alleles from different demes), can easily find fit genotypes. There are only two genes, 
and the best genotypes are simply the union of best alleles from these two genes (Fig. 
2 right) – so local optimisation in allele space will easily find good genotypes if good 
alleles for these two genes are provided. However, if there were no nucleotide-scale 
optimisation there would be no good alleles on which this allele-scale optimisation 
could operate. Specifically, the number of possible combinations of nucleotides in a 
gene is exponential in the number of nucleotides it contains, and if fit alleles of the 
gene are rare then neither initial standing variation nor spontaneous mutation can be 
guaranteed to provide these fit alleles. In this example, the best alleles for each gene 
are unique in a space of 2n possible alleles for each gene. For large n, without local 
optimisation in nucleotide space, finding them relies on chance and is infeasible. Lo-
cal optimisation on alleles alone will only be able to select on the best alleles that are 
in the initial population or any better alleles that might be provided by random search 
in the set of alleles for each gene. Thus although optimisation at the scale of alleles is 
not troubled by local optima in nucleotide sequence space, it also cannot exploit local 
search in nucleotide space as is required to find fit alleles. 

To examine the above reasoning the simulation experiments use the parameters 
given in Table 1. To maintain population diversity the population was subdivided with 
a total population of 10,000 individuals, subdivided into 100 demes of 100 individuals 
each. (These demes are bigger than those used in [11] so as to preclude the need to 



use elitism which would explicitly create a means for whole genotypes to reproduce 
without modification and confound these studies). Migration between demes was such 
that one individual in each new generation in each deme was a migrant from some 
other randomly selected deme. Each sub-population independently creates a new gen-
eration by fitness proportionate selection (with replacement) [4]. Each individual in 
each deme is initialized to a random binary string of 100 bits – representing two genes 
of 50 nucleotides each. In the crossover methods, crossover is applied to all reproduc-
tion events. The data recorded are the number of generations until the first occurrence 
of the fittest genotype, and also the number of generations for the fittest alleles to arise 
in both genes (numbers in brackets give the standard deviation). 30 independent runs 
of each parameter set were performed. Runs were terminated at a limit of 2000 gen-
erations. 

In Table 1, L=100 is the length of the genotype in bits. Mutation values are the 
probability that each bit of the genotype is replaced with a new random bit. 
‘NRA’=New Random Allele, i.e. a randomly generated combination of nucleotides for 
a whole gene (this is equivalent to genewise crossover with a random string, and 
thereby confirms that the success of crossover in experiment 3(b) is not the result of 
“macromutation” [12]). The crossover value, C, is the probability that a crossover 
point occurs between adjacent loci. C=0.5 is free recombination, or uniform cross-
over. ‘Genewise’ means that crossover occurs only between the two genes and never 
within them (given that the coding regions of biological genes are very small com-
pared to the intergenic distances, this scenario is actually the most biologically realis-
tic). Finally, C=1/L produces on average one crossover point per reproduction but, 
unlike genewise crossover, its location is random. 

 

   Generations to find:  
Experiment Mutation Crossover ~ best alleles ~ best genotype 

1.a) 1/L 0 36 (2) > 2000 
b) 0 0.5 9 (1) > 2000 

2.a) NRA 0 > 2000 > 2000 
b) 0 genewise > 2000 > 2000 

3.a) 1/L genewise 36 (2) 50 (4) 
b) 0 1/L 90 (25) 181 (32) 

 

Table 1: parameters and results of simulation experiments. 
 

Exp. 1 examines optimisation on the scale of nucleotides only, a) provided by local 
mutation on individual nucleotides (with selection on whole genotypes, i.e. C=0), 
b) provided by direct selection on individual alleles (i.e. C=0.5). Exp. 2 examines 
optimisation on the scale of whole alleles only (50 nucleotides each), a) provided by a 
‘local’ mutation model that creates new random alleles (with selection on whole al-
leles via genewise crossover), b) provided by direct selection on standing variation 
(also via genewise crossover). Exp. 3 examines optimisation on the scales of nucleo-
tides and alleles simultaneously, a) uses a combination of mechanisms from 1a and 2b, 
i.e. local mutation on individual nucleotides and direct selection on alleles. Exp. 3b 
uses direct selection at two scales provided by selection on variable sized sections of 
chromosome using a low per locus crossover probability (initial standing variation 
provides the necessary nucleotides). 



Table 1 also gives the results of these simulations. In Exps. 1 and 2 all 30 runs 
failed to find the best genotype in 2000 generations. Exps. 1 and 3 succeeded in find-
ing the best alleles for both genes in all 30 runs, but only Exp. 3 succeeds in finding 
the best genotypes in any runs, and in fact finds them in all runs. As hypothesised we 
see that optimisation on the scale of nucleotides only can find fit alleles but not fit 
genotypes, optimisation on the scale of alleles only cannot find fit alleles, and optimi-
sation on both nucleotides and alleles is necessary and sufficient to find fit genotypes. 
Unsurprisingly, Exps. 1 and 2 are no better in other simulations using a panmictic 
population, failing in all 30 runs, as does Exp. 3b. in 28 of the runs. But interestingly, 
Exp. 3a. does succeed in 14 of 30 runs with a panmictic population (mean 71 (98)) 
indicating that the two-scale optimisation is not entirely dependent on population 
subdivision. Exp. 3b is interesting because it uses recombination to provide optimisa-
tion at both scales.3 This appears to be dependent on the subdivision model and further 
examination is required to ascertain its similarities and contrasts with SBT. Compar-
ing with the simulations performed in [11] which use a recombination rate of 1/L (as 
in Exp. 3b) but also use mutation at a rate of 1/L (as in 3a), Exps. 3a and 3b separate 
out the mechanisms that might be responsible for the result in [11]. 

5. Conclusions  

The simulations show that, in a scenario like the example modelled, two scales of 
optimisation are in operation and are required to find fit genotypes. What does this tell 
us about the relevant units of selection? Arguably, in Exp. 3 the unit of selection is 
still the gene because this is the largest unit that replicates reliably under recombina-
tion at these rates. But it would be a mistake to conclude that this is the whole story. 
Let us consider further what has historically been the main purpose of defining the 
unit of selection: i.e. to identify the unit that adaptation by natural selection acts in the 
interest of? A lot of relevant discussion has been focussed on evolution for the good of 
the group versus evolution for the good of the individual [1], but also on evolution for 
the individual versus evolution for the gene [2]. Should we add to this list the question 
of evolution for the good of the gene versus evolution for the good of the nucleotide? 
Although these are the two scales in question here, ascribing benefit to a nucleotide 
does not seem conceptually useful to me. Moreover, it is not clear to me that this is the 
right question to be asking, or that it has a sensible answer. In contrast, I find it rela-
tively unambiguous to state that evolution is performing local optimisation at the nu-
cleotide scale and at the allele scale. Moreover, Exp. 3b shows that this could in prin-
ciple apply at other scales such as genes and combinations of genes, and that it would 
be incorrect to insist that any one scale was sufficient to understand the process. 

Accordingly, a preoccupation solely with the unit defined by the recombination rate 
does not necessarily capture all the important scales in evolutionary processes. In 
particular, sexual recombination and spontaneous mutation may provide different 
                                                           
3  This means that multi-scale optimisation is not necessarily restricted just to nucleotides and 

alleles, but in principle to alleles and combinations of alleles, although the utility of optimi-
sation at the scale of combinations of alleles would depend on the structure of the genetic 
map and its correspondence with epistatic interactions [13]. 



levels of optimisation. This suggests that it is not always appropriate to abstract the 
combinations of nucleotides within the alleles of genes into indivisible units simply 
because this is the unit that is particulate under crossover. Simplifying assumptions 
about epistasis may preclude the necessity for such distinctions, but biologically plau-
sible epistatic structures are complex, and simplistic models may overlook significant 
structure that makes these distinctions important, as shown in the example model. 
Similarly, simplifying assumptions about population structure (like panmixia), and 
recombination models (like uniform crossover), are also self-reinforcing in that they 
each exclude the phenomena that make the other interesting. Natural populations often 
lie outside these simplifying assumptions about sex, population structure, and epistasis 
and require a more sophisticated treatment of the mechanisms involved. 

More generally, these observations challenge our understanding of the underlying 
algorithmic principles of evolution by natural selection – in this example we cannot 
model the action of evolution as a hill-climbing process that operates at any one scale. 
Two-scale optimisation is more closely allied to a divide and conquer process of prob-
lem decomposition [13]. Such a distinction is implied in the evolutionary computation 
literature on the building block hypothesis [4][14][15]. Issues of selection on parts and 
wholes are also important to artificial life in understanding mechanisms that scale-up 
the processes of evolution [16], and to understand when evolutionary processes can do 
more than simple hill-climbers can [13]. 
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