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Abstract. Evolution by natural selection is a process ofatam and selection
acting on replicating units. These units are oftesumed to be individuals, but
in a sexual population, the largest reliably-regticl unit on which selection
can act is a small section of chromosome — hetee,selfish gene’ model.
However, the scale of unit at which variation bgisineous mutation occurs is
different from the scale of unit at which variatiby recombination occurs. |
suggest that the action of recombinative variahod mutational variation to-
gether can enable local optimization to occur at tlifferent scales simultane-
ously. | adapt a recent model illustrating a berefsexual recombination to il-
lustrate conditions for two scales of optimizationnatural populations, and
show that the operation of natural selection irs $genario cannot be under-
stood by considering either scale alone.

1 Nucleotides, genes, and individuals

Although it is often convenient when providing emobnary explanation to suppose
that selection acts on individual organisms, if,facsexual populations the combina-
tion of alleles represented in an individual’'s ggpe is not reliably transferred to its
offspring [1][2]. In sexual populations the largestit of genetic material that repro-
duces with reliable fidelity is a subsection of@mosome small enough to avoid be-
ing disrupted by crossover. The size of these wyiltde determined by the crossover
rate, with higher rates defining smaller units, but @@mmon purposes it is taken that
the relevant unit is about the size of individuahgs [1]. Accordingly, since the gene
is the largest genetic unit that reproduces reliable gene is the largest unit on which
natural selection can act [1] — hence, the wellkmdselfish gene” framework [2].
These observations support fundamental axioms lymigrthe way evolution is de-
fined, i.e. the change in frequencies of allelea igene pool [3], placing attention on
the frequencies of individual alleles, not the freqcies of genotypes. Although the
selective unit might seem unambiguous in evolutip@dgorithms because evaluation
is always applied to individuals and individuainfisses determine reproduction, in
fact the same issues apply if sexual recombinatiorgrossover, is used. Although
individuals are selected to reproduce, the genetic materigddfiduals is broken-up
by crossover, so it is onfyagmentsof individuals whose frequencies can be affected
by selection — hence, attention on “schema” in e@hary computation theory [4].

1 The probability of recombining adjacent loci (itbe probability that crossover is applied to
an individual, as sometimes meant in evolutionamygutation). Se€ in Table 1.



Biologically, the genes on which selection acts magsist of thousands of nucleo-
tides. New variants of genes (new alleles) areihtced by spontaneous point muta-
tion affecting one or a small number of individuaicleotides within a gene. Accord-
ingly, the scale of unit that is manipulated by ation (individual nucleotides) is quite
a different scale of unit from that which is margied by recombination (alleles of
genes). However, since selection acts on wholdeallg is common in population
genetics models to abstract away the nucleotidel-ldgtails and simply refer to the
variant alleles of a gene by unique labels, A.gnda. Each allele label represents a
different combination of maybe thousands of nudtkss, but if one allele is produced
by mutation of the other, then they may differ myoa few nucleotide substitutions.
This abstraction of the internal detail, hiding tlegel of individual nucleotides on
which mutation acts, is appropriate for some pueposndeed, it sufficed perfectly
well for all the population genetic results derivaibr to the discovery of the molecu-
lar structure of DNA [5]. Historically, an allels simply defined as a particulate unit
of Mendelian inheritance (thus being intimatelyjkéd to the action of recombination),
and the fact that, on a molecular basis, each siusdf thousands of nucleotides was
not known. Following conventional population geoetiodels, evolutionary computa-
tion models [4] used in artificial life rarely makbe distinction between genes and
nucleotides. Individuals are generally modelledbasary strings where each bit is
taken to be synonymous with the allele of a gena particular locus and mutation
changes the bit between one allele and the other,10 standing in foA anda. The
problem is that this abstraction is not consisteith a model of a gene containing a
thousand nucleotides and®® different alleles — consider the probability ofever-
sion, or “back mutation”, for example, or more gelg, the probability of finding a
particular allele by random mutation. This incoteigy can cause more than a mere
terminological problem, especially in cases whergation and recombination are
applied together.

So, in population genetics and in evolutionary cotapion, does it matter whether
genes are modelled as collections of nucleotidesimply abstracted into particulate
alleles? There are many scenarios, lying within mom assumptions, where it does
not. But there are other scenarios that are bicéilgi plausible where it does matter.
The aim of this paper is to discuss the concepssaies involved and examine the
implications of moving outside common assumptidnse some simulation results as
an example just to illustrate some of the salienhts. My claim is that existing defi-
nitions of the unit of selection and common simyti§ assumptions preclude some
interesting phenomena, and more specifically, théd necessary in some cases to
recognise more than one level of optimisation tdanstand the action of evolutionary
systems. Cases (like those examined here) thatostisple the usual simplifying as-
sumptions are necessary for understanding the g evolution in natural popu-
lations. They are also necessary for understarttimgto use and model evolution in
artificial life experiments, and in addressing toenplex relationship that these obser-
vations have to concepts of the unit of selectioa @elated processes such as Shifting
Balance Theory [6].

The following two sections introduce the basic &lahout why two levels of opti-
misation may be required to find fit genotypes ifitaess landscape, and how this
might be provided. Section 4 describes a set dlilsition experiments to illustrate the



effect of changing the scales at which optimisaiapplied. Specifically, | show that

optimisation at any one scale is insufficient talffit genotypes, and a combination of
optimisation scales is required. | illustrate twiffedent ways in which these two

scales can be provided, but the main idea is thaéation manipulates the nucleotides
and recombination manipulates the alleles of gefks.quite simple idea that muta-
tion and recombination afford local optimisationdifferent spaces by operating on
different units motivates a rethink about simpdisiotions of the unit of selection.

2 Background: sdlective unitsand local optima

| suggested above that there are evolutionary sicsnthat afford optimisation on
some unit of genetic material and also on comhonatiof that unit: specifically, nu-
cleotides and combinations of nucleotides (i.eledl of genes). The consequences of
this are the same for other scales of units, famgle, alleles and combinations of
alleles. In fact, discussion about the possibiityselection on combinations of alleles
has quite a history in population genetics and are ©se this to better understand the
implications of having optimisation occur at thevér scales of nucleotides and com-
binations of nucleotides.

If selection acts on individual units (of whatewsrale), then this has important
consequences for what evolution by natural seleatam and cannot do. If selection
acts on individual units, then evolution can orggpond to the net fitness effects of
individual units. Although a piece of genetic métklike an allele may have different
fitness effects in different genetic backgrounti® thange in frequency of that unit
over several generations cannot be controlled dyitihess in any particular back-
ground in a sexual population (as its presence given background is not reliably
reproduced). Instead, Fisher argues, the chanffednency of an allele will be con-
trolled by its averagéitness excesgr], roughly, its average fitness effect over the
backgrounds in which it occurs. A consequence lefcten on the average effect of
individual units is that if a particularly ftcombinationof units involves units that are
individually disfavoured then, even if that combination shdwddpen to arise in some
individual, it cannot take hold in the population.

A particular instance of this may occur when a pagen is stuck at a local fitness
peak in a fitness surface. Consider a genofypleat is locally optimal and a second
genotypeB that is fitter. All single allele substitutions o are deleterious (by the
definition of being locally optimal) sB (necessarily) differs fromA by several allelic
substitutions. These allelic differences are thoitectively favourable but individu-
ally unfavourable to a genotype/tSince sexual recombination re-assorts alleles int
the different genetic backgrounds of other indialduin the population, even if such a
combination of alleles were introduced to an indiial in a population located Af
selection would act on the alleles individually aethove them from the population.
Sewell Wright considered the escape from a lotaéds peak to a genotype of higher
fitness to be the central problem of evolution @jd devised Shifting Balance The-
ory, SBT, [6] to explain how population subdivisionght enable an evolving popula-
tion to achieve this. However, some consider thaitmns for SBT to not be widely,
if at all, available in natural populations [9].



Actually, it would be easy to facilitate selection combinations of alleles if the
crossover rate could be modified. That is, if thessover rate were very low then
alleles would not assort independently and wouddeiad be selected as a unit, and in
the limit, the entire genotype of asexualindividual replicates as a whole. If an
asexual population was centred Anand the combination of alleles required to reach
B were introduced to an individual in the populatitmen selection would have no
problem in promoting the resultaBt genotype to take over in the population. But
selection on combinations of alleles has its disathges as well. In some circum-
stances it can be favourable to have selectionrathe average fitness effect of indi-
vidual alleles rather than on combinations of allelFor example, when a sub-optimal
combination of alleles arises in a genotype, coirigi some favourable alleles and
some disfavoured alleles, an asexual populatiemable to promote the good alleles
without also promoting the bad alleles. This is fiasis of the classic Fisher/Muller
model for the benefit of sexual recombination [A]short, in some circumstances it is
preferable to have selection act on individual suaind in others it is preferable to
have selection act on combinations of units. Thenér cannot select for good
combinations of units unless they involve only sivithich are also individually good,
and the latter cannot select for good individuatsunnless they are in a collectively
good combination of units.

Fisher and Wright were concerned with the actiosedéction on alleles and com-
binations of alleles, but here we are concernedtii® most part) with nucleotides and
combinations of nucleotides (alleles). The samesaeiag applies: in some cases
selection on individual nucleotides may be beneficand in others selection on al-
leles may be beneficial. In natural populationgldés not make sense to imagine that
recombination rates are so high that selection@ciadividual nucleotides. But | will
argue that mutation effects local optimisation ircleotide sequence space, and that
if, at the same time, recombination is manipulatiigple alleles, then this can effect a
two-level process of optimisation. Such a scen&iprecluded in prior models by
common assumptions about the epistasis model,laodg the abstraction of nucleo-
tide combinations into particulate alleles. In tfext section | clarify what | mean by
local optimisation and the different ways that &ireg populations can provide it.

3. Modes of local optimisation

Given a combinatorial search spaceg,,Us,... > (Where each point in the space is a
combination of values for each of the unigsto uy) local optimisation involves the
movement of a point through this space where ssopoints are neighbouring or
nearby. For exampléijll climbing optimisation follows trajectories formed by moving
to adjacent points that are higher in fitness. #olweng population is often conceived
as a hill climbing process. However, there are twalitatively different means by
which this may be provided in evolution by natwselection (one being more common
in evolutionary computation and the other beingermymmon in population genetics)
and these are often not distinguished properhalll theselocal mutationanddirect
selection Fig.la. illustrates local mutation as provided foy example, an asexual
population with a low rate of spontaneous pointatiah on nucleotides. Here, al-



though selection promotes entire genotypes, mutatiodifies one or a small number
of nucleotides (e.g. third locus) enabling onlydbemovement in the combinatorial
space of nucleotides. This maps very naturallyiteniotation hill climbers used in

computational optimisation. Fig.1.b. illustratesdboptimisation via direct selection
on individual units as provided by, for examplesexual population that exhibits free
recombination between alleles (that is, allelesosmdependently during sexual
reproduction). In this case, an evolving populat@am (with some simplifying as-

sumptions about linkage equilibrium [10] and emiistabe usefully described as a
point in allele frequency space [8]. If selectiattig on individual units makes small
adjustments to the frequencies of these units, tiempopulation has performed local
movement in this space. This sense of local opétias is the normal interpretation
of evolution in population genetics models (thougt with all the same terminology).
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Fig. 1. Rows are individuals in a population; boxes showtsuaf genetic material;
braces show selection pools. a) local mutatiomlifgct selection. c) see text.
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Formally, local mutation and direct selection manedifferent spaces, genotype
sequence space and allele frequency space, reshgcBut note that genotype se-
guence space is coincident with the vertices dflalfrequency space (i.e. points
where frequencies are either 1 or 0). The more itapodifference is that the units in
the natural interpretation of local mutation (ire tpost-molecular-genetics era) are
nucleotides, whereas the units in the natural pmégation of direct selection are al-
leles (Mendelian units of inheritance). If the srthat the two mechanisms manipulate
are not the same scale then this makes a profoifiededce in the ‘locality’ of the
spaces in which this optimisation occurs. Altholggtal optimisation at any scale can
become stuck on local optima at that scale, loptfresation at different scales ‘sees’
different fitness landscapes, different fitnesdgrats, and different local optima.

Unlike Fig. 1b where alleles are abstract, Fig.illustrates alleles that are each
composed of many nucleotides. Here if variationoiditices new alleles that differ by
only one nucleotide (left of Fig. 1c) then we dtilve local optimisation at the nucleo-
tide scale. In contrast, if variation introducesngdetely new alleles (right of Fig. 1c),
this effects local optimisation at the allele schl¢ not at the nucleotide scale. A
combination of mutation on nucleotides and recoiidm of whole alleles has the
potential to provide optimisation at two differesttales simultaneously, and when the
local optima of one scale are different from thoééhe other scale, the interaction of
the two can provide optimisation that neither oceescan provide alone.



4. Examining a model landscape

The consequences of optimisation at more than cale svill only be seen if we re-
move common simplifying assumptions about epistémsis would cause local optima
at different scales to be coincident. Previous wadd described a fithess landscape
designed to illustrate a benefit of sexual recomitdam that is well suited for our pur-
poses here. This work showed that a subdividedadepapulation can discover the
highest fitness genotypes of this landscape edsilyan asexual population (under the
same conditions) cannot. In this paper | use tloslehto demonstrate that there are
two levels of optimisation involved in this effeby explicitly examining the local
mutation and direct selection mechanisms at theldesf nucleotides and alleles.

In this model a genotype consists of two genes eaataining many nucleotides.
The epistasis in the model has strong ‘synergyjadd mutations within a gene, and
also a general field of random epistatic interactiamong all mutations. The fitness
of a genotype is given By:

f(G)=R;(2'+27) @)

wherei is the mutational (Hamming) distance of one ofgkees (the first half of
the genotype{g1,%,...,a}) from an ideal allele, andis the mutational distance from
an ideal allele in the other gene (the second dfathe genotypdgn+1,0n+2;---,&n}),
and eaclR; is a random value drawn uniformly in the range [0).%for one instance
of this random landscape, eaghis a constant). The basic form of modularity used
here, where genes are constituted by a large nuwbeucleotide sites that are
grouped both functionally (with epistasis) and ptetly (by location on the chromo-
some), is also seen in natural systems where thleatides of a gene are grouped
functionally and physically by virtue of the tranigtion and translation machinery.
Without loss of generality, the maximum fitheseklIfor each gene can be that where
all nucleotides are 1s, and the maximum fitnesoiype is that where both genes
have their maximum fitness alleles, i.e. the alggaotype. This function can be con-
veniently drawn as a two dimensional fitness langecwhere the two axes are the
number of 1s in each of the two genes (Fig. 2).

The idea behind this model is that mutation witired locally to find good combi-
nations of nucleotides within each gene, and cragseill make new combinations of
alleles to bring these the two good alleles togeéimel hence find fit genotypes. This
is a simple idea but it is worth pointing out tivamost cases over-simplistic assump-
tions about epistasis preclude the need for a éwetldescription of the evolutionary
process, even if the two processes are availablat i$, in simple landscapes, if selec-
tion can find good alleles by finding good nucldetimutations, then fit genotypes can
be found by simply doing more of this, i.e. findittge good nucleotide mutations in
all genes. However, in this landscape, it is easfind the best allele for gene 1 by
accumulating beneficial mutations only when genis Aot yet well optimised, and
vice versa. Once either of the genes becomes wiithized it then becomes difficult
to find the best allele for the second gene wittdistupting the fitness contributions

2 This is modified to keep the maximum fitness eala be 3 (and make it insensitiveriathe
number of nucleotides per gene) but the originapshof the function is retained.



of the first. This can be seen by considering tlablem of escaping the local optima
in the fitness ridges shown at the back of Figle)( Specifically, each local opti-
mum shown is a local optimum in nucleotide sequespae, so although it is easy to
find a good combination of nucleotides for eitheng by selecting on nucleotides, it
is not the case that continued selection on ind&lichucleotides will find the fittest
genotypes.
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Fig. 2. The fitness landscape defined by Equation 1.
left) as seen by nucleotide variation, right) asnsey combinations of good and bad alleles.

Thus local optimisation on nucleotides will eadilyd a good allele for one of the
genes but will then be stuck on a local optimuma Isubdivided population different
demes may find individuals on different local peaésme having optimised gene-1
(but not gene-2) and others having optimised gef®i2not gene-1). But that is as far
as it goes with optimisation only on nucleotideso-the nearest peak in nucleotide
sequence space (Fig. 2. left). Additional selectinrthe allele scale, (taking the good
alleles from different demes), can easily findginotypes. There are only two genes,
and the best genotypes are simply the union ofdlkdes from these two genes (Fig.
2 right) — so local optimisation in allele spacdl wasily find good genotypes if good
alleles for these two genes are provided. Howef/g¢here were no nucleotide-scale
optimisation there would be no good alleles on Whidis allele-scale optimisation
could operate. Specifically, the number of possddenbinations of nucleotides in a
gene is exponential in the number of nucleotidesittains, and if fit alleles of the
gene are rare then neither initial standing vamatior spontaneous mutation can be
guaranteed to provide these fit alleles. In thianeple, the best alleles for each gene
are unique in a space of possible alleles for each gene. For langavithout local
optimisation in nucleotide space, finding themeaglon chance and is infeasible. Lo-
cal optimisation on alleles alone will only be aldeselect on the best alleles that are
in the initial population or any better allelestth@ight be provided by random search
in the set of alleles for each gene. Thus althaygmisation at the scale of alleles is
not troubled by local optima in nucleotide sequespace, it also cannot exploit local
search in nucleotide space as is required to firadléles.

To examine the above reasoning the simulation é@xgets use the parameters
given in Table 1. To maintain population diverghyg population was subdivided with
a total population of 10,000 individuals, subdivddato 100 demes of 100 individuals
each. (These demes are bigger than those used]irsglas to preclude the need to



use elitism which would explicitly create a meaas \hole genotypes to reproduce
without modification and confound these studiesigrsition between demes was such
that one individual in each new generation in edeme was a migrant from some
other randomly selected deme. Each sub-populatidependently creates a new gen-
eration by fitness proportionate selection (witplaeement) [4]. Each individual in
each deme is initialized to a random binary stoh@00 bits — representing two genes
of 50 nucleotides each. In the crossover methadssover is applied to all reproduc-
tion events. The data recorded are the numberr@rgéons until the first occurrence
of the fittest genotype, and also the number ofgations for the fittest alleles to arise
in both genes (numbers in brackets give the standeviation). 30 independent runs
of each parameter set were performed. Runs wemgnated at a limit of 2000 gen-
erations.

In Table 1,L=100 is the length of the genotype in bits. Mutati@ues are the
probability that each bit of the genotype is repthcwith a new random bit.
‘NRA'=New Random Allele, i.e. a randomly generataimbination of nucleotides for
a whole gendthis is equivalent tggenewisecrossover with a random string, and
thereby confirms that the success of crossovexje@ment 3(b) is not the result of
“macromutation” [12]). The crossover valug, is the probability that a crossover
point occurs between adjacent 10€=0.5 is free recombination, or uniform cross-
over. ‘Genewise’ means that crossover occurs oetwéen the two genes and never
within them (given that the coding regions of bgitl genes are very small com-
pared to the intergenic distances, this scenaraetisally the most biologically realis-
tic). Finally, C=1/L produces on average one crossover point per ragiiod but,
unlike genewise crossover, its location is random.

Generationsto find:
Experiment M utation Crossover ~best alleles | ~best genotype

1l.a) 1L 0 36 (2) > 2000

b) 0 0.5 9(1) > 2000
2.a) NRA 0 > 2000 > 2000

b) 0 genewise > 2000 > 2000
3.a) 1L genewise 36 (2) 50 (4)

b) 0 1L 90 (25) 181 (32)

Table 1: parameters and results of simulation experiments.

Exp. 1 examines optimisation on the scale of nditles only, a) provided by local
mutation on individual nucleotides (with selection whole genotypes, i.€C=0),
b) provided by direct selection on individual adlel(i.e.C=0.5). Exp. 2 examines
optimisation on the scale of whole alleles only (k@leotides each), a) provided by a
‘local’ mutation model that creates new randomlafigwith selection on whole al-
leles via genewise crossover), b) provided by dissdection on standing variation
(also via genewise crossover). Exp. 3 examinesnigdiion on the scales of nucleo-
tides and alleles simultaneously, a) uses a cortibmaf mechanisms from 1a and 2b,
i.e. local mutation on individual nucleotides aricedt selection on alleles. Exp. 3b
uses direct selection at two scales provided bgcteh on variable sized sections of
chromosome using a low per locus crossover probalfihitial standing variation
provides the necessary nucleotides).



Table 1 also gives the results of these simulatitm€Exps. 1 and 2 all 30 runs
failed to find the best genotype in 2000 generatidxps. 1 and 3 succeeded in find-
ing the best alleles for both genes in all 30 rim&,only Exp. 3 succeeds in finding
the best genotypes in any runs, and in fact fihdstin all runs. As hypothesised we
see that optimisation on the scale of nucleotiddg oan find fit alleles but not fit
genotypes, optimisation on the scale of alleley oahnot find fit alleles, and optimi-
sation on both nucleotides and alleles is necessatysufficient to find fit genotypes.
Unsurprisingly, Exps. 1 and 2 are no better in o#ieulations using a panmictic
population, failing in all 30 runs, as does Exp. iBb28 of the runs. But interestingly,
Exp. 3a. does succeed in 14 of 30 runs with a petitrpopulation (mean 71 (98))
indicating that the two-scale optimisation is natirely dependent on population
subdivision. Exp. 3b is interesting because it usesmbination to provide optimisa-
tion at both scalesThis appears to be dependent on the subdivisiatehand further
examination is required to ascertain its similagtand contrasts with SBT. Compar-
ing with the simulations performed in [11] whicheua recombination rate of 1/L (as
in Exp. 3b) but also use mutation at a rate of (B4 in 3a), Exps. 3a and 3b separate
out the mechanisms that might be responsible forekult in [11].

5. Conclusions

The simulations show that, in a scenario like tkengple modelled, two scales of
optimisation are in operation and are requiredrtd fit genotypes. What does this tell
us about the relevant units of selection? ArguainlyExp. 3 the unit of selection is
still the gene because this is the largest unit rdyalicates reliably under recombina-
tion at these rates. But it would be a mistakedlctude that this is the whole story.
Let us consider further what has historically bé&a® main purpose of defining the
unit of selection: i.e. to identify the unit thatagtation by natural selection acts in the
interest of? A lot of relevant discussion has bieenssed on evolution for the good of
the group versus evolution for the good of theviutlial [1], but also on evolution for
the individual versus evolution for the gene [Zjo8ld we add to this list the question
of evolution for the good of the gene versus evoiufor the good of the nucleotide?
Although these are the two scales in question regeribing benefit to a nucleotide
does not seem conceptually useful to me. Moreawisrnot clear to me that this is the
right question to be asking, or that it has a $#@sinswer. In contrast, | find it rela-
tively unambiguous to state that evolution is perfiog local optimisation at the nu-
cleotide scale and at the allele scale. Moreovep, Bb shows that this could in prin-
ciple apply at other scales such as genes and patidis of genes, and that it would
be incorrect to insist that any one scale wasaafit to understand the process.
Accordingly, a preoccupation solely with the urefided by the recombination rate
does not necessarily capture all the importantescal evolutionary processes. In
particular, sexual recombination and spontaneoutation may provide different

8 This means that multi-scale optimisation is netessarily restricted just to nucleotides and
alleles, but in principle to alleles and combinati®f alleles, although the utility of optimi-
sation at the scale of combinations of alleles walgpend on the structure of the genetic
map and its correspondence with epistatic intevast[13].



levels of optimisation. This suggests that it i$ always appropriate to abstract the
combinations of nucleotides within the alleles ehgs into indivisible units simply
because this is the unit that is particulate uratessover. Simplifying assumptions
about epistasis may preclude the necessity for distimctions, but biologically plau-
sible epistatic structures are complex, and sirtipllmodels may overlook significant
structure that makes these distinctions importaatshown in the example model.
Similarly, simplifying assumptions about populatistructure (like panmixia), and
recombination models (like uniform crossover), alg self-reinforcing in that they
each exclude the phenomena that make the otheestitey. Natural populations often
lie outside these simplifying assumptions about pepulation structure, and epistasis
and require a more sophisticated treatment of #sehamisms involved.

More generally, these observations challenge oderstanding of the underlying
algorithmic principles of evolution by natural sgien — in this example we cannot
model the action of evolution as a hill-climbingpess that operates at any one scale.
Two-scale optimisation is more closely allied tdieide and conquer process of prob-
lem decomposition [13]. Such a distinction is ireglin the evolutionary computation
literature on the building block hypothesis [4][[14]. Issues of selection on parts and
wholes are also important to artificial life in werdtanding mechanisms that scale-up
the processes of evolution [16], and to understameh evolutionary processes can do
more than simple hill-climbers can [13].
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