Measurement of Human Concentration with
Multiple Cameras

Kazuhiko Sumi, Koichi Tanaka, and Takashi Matsuyama

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan,
sumi@vision.kueee.kyoto-u.ac. jp,
WWW home page: http://vision.kuee.kyoto-u.ac.jp/

Abstract. We propose a new method to estimate human change of con-
centration from multiple camera views of the human. In our method,
human state of concentration is observed as self-load, defined as energy
injected in a period to keep and manipulate his/her body. If a person is
concentrating to a certain task, he/she will brace himself/herself for bet-
ter results, and energy consumption will increase. To confirm our idea,
we developed a method to calculate self-load from multiple view of the
human. We conducted an experiment in which test subjects have dif-
ferent level of complexity of task. Self-load of the subjects showed the
positive correlation with the complexity of the task. We have convinced
that self-load can be used to characterize the concentration of person
being observed.

1 Introduction

One of the big difference between human-to-human interaction and human-to-
computer interaction is timing. We human can measure timing to start con-
versation with another human. Measuring timing is a very sophisticated social
action, which is not achieved by a computer yet. To realize such a behavior, it
is important to have a good sensing systems to observe the human action and
his/her internal state. In this research we focus on sensing human internal state,
such as concentration, interest and frustration.

So far, many studies on human observation were carried out. Most of them
are recognizing intentional signal in communication. Such researches include ges-
ture recognition, facial expression recognition, lip reading, and voice recognition.
Those methods are quite reasonable when the person is already interacting with
a computer. On the other hand, if a person is not involved in communication, but
is engaging in other personal jobs, the channel of communication is not estab-
lished. In such cases, a computer should estimate the human interest, intention
and feeling through one-way observation. This will often happen when assisting
a human involved in a work, such as driving a car, operating a machine, trav-
eling in an unfamiliar places, looking for something, and so on. If the person is
doing something in concentration, it is not a good manner to offer help. But if
the person is wondering, it might better to support him/her. Thus observing a
human without interaction is a challenging subject.



Human internal state such as stress or frustration can be measured through
a various sensors. Picard developed wearable sensors for human observation[4]
using galvanic skin response, blood volume pressure, and electromyograph. Fer-
nandez applied the system to measure frustration of a human using a com-
puter[5]. However, wearing such a device may not be comfortable, and sensing
from outside of a human is preferred. Mota analyzed learner’s interest level by
measuring 2D pressure distribution between a human and a chair under the hu-
man[6]. This system provides better comfort, but, still need to be contacting
toward something. To realize non-contact human observation in a free space, we
are interested in observing a human from cameras.

Cameras can be used to observe a human through various cues of human be-
haviors, such as, eye and sight[8], expression[7], gesture[2], and body posture[3].
To understand a human better, it is preferred to get a close up view of the
human. However, in a ordinary room, it is not easy to get a close up view of
his/her face all the time. Thus we are interested in observing a human only with
cameras with wide field of view.

In this research, we estimate the concentration, in other words, how much
is the human is occupied by the task he is doing. We use multiple cameras
surrounding the human to be observed. To achieve a quantitative analysis we
introduce new measure, which is referred to as self-load. Self-load is a energy
consumption per unit time. The energy consumption is derived from static and
dynamic posture of the observed human.

In the following section, first we define self-load and its derivation from
his/her posture in Section 2. Then, we explain the pose estimation method us-
ing multiple cameras in Section 3. To confirm the effectiveness of our proposal,
two series of experiments are carried out in Sectiond. Finally, we conclude our
proposal in Section 5.

2 Calculation of Self-load using Cylindrical Human Body
Model

In human body condition, compared with the state of doing nothing, thus no
stress in his/her muscle, the work load which supplies the energy per unit time
to the present body expression is calculable. The amount of energy consumption
is referred to as self-loads. Although self-load is a physical amount of energy and
is not a mental state, it is reasonable to assume that there is a high correlation
between physical energy consumption and mental concentration.

First, the amount of energies needed about maintenance of a certain body
posture and operation is defined by potential energy, movement energy, and
posture maintenance energy. Posture maintenance energy is the energy required
in order to maintain the posture and to keep muscles tension. If the joint is in
the neutral position, posture maintenance energy is zero. It is expressed with
the difference from the neutral state. If a person is putting his/her part on a
structure, posture maintenance energy should be deducted, because he/she can
save stress of his/her muscle. However, it is difficult to measure a force between
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Fig.1. A cylindrical human body model and parameters of its parts (left), and
schematic diagram of human upper pose estimation from multiple camera images via
3D volume of a human (right)

the body and the structure, we will not consider the case in this research. Instead,
we only treat a human with stable supporting energy.

In this chapter, we will apply Hill’s muscle model[9], which considers an
actuator pulling two springs with dumper, to calculate the sum of the energy
consumed by a body part at a certain angle. Also, we assume that muscle actua-
tion is iso-tensional, and the tension is only caused by gravity. This assumption
is not satisfied when a person is pressing or pulling a hard structure with his
muscle or when he is stressing his body. We don’t consider such invisible cases
in this study. Thus, we will consider visible part of posture maintenance energy
which is expressed by the gravitation moment on a body part.

We model a human body by a set of cylinders shown in Figure. 1(left). A
unit part of the body model is a single cylindrical part. Instantaneous self-load
of the unit sl., lower arm for example, is the sum of potential energy sl?, motion
energy sI™, and posture maintenance energy sI¥ shown in Equation 1.

1
sle = sl + sl7* + sl’ec = meghe + ZmeLewe(t)2 + sl]ec (1)

wherell g, Le, me, he, we(t) are G-forces, length of the arm, mass of the arm,
height of the arm center from the lowest position, and angular velocity of the
arm at time ¢, respectively. Posture maintenance energy of the lower arm sl is:

L. 0.
Slf = me97 COS(;) - Slf init (2)

And its initial value is sl*, ., = %megLe. We can calculate self-load of upper
arms slg;, sls-, and that of chest sl,, in the same way. Instantaneous self-load of

the whole upper body sl is the sum of self-load of all the parts:

sl = slgp + 8loy + slgy + Slgr + sl (3)



Self-load of the body SL is defined by the temporal average of the instantaneous
self-load during the time interval T

1
SL = ?Zsl (4)

3 Pose Estimation from 3D Volumetric Representation

We estimate the pose parameters required for self-load calculation from the 3D
volumetric representation. The 3D volumetric representation is derived by the
intersection of visual cones[11]. For each visual cone, its top vertex is the camera
center and its base plane is the silhouette of the body taken by the camera. This
step is show in Figure.1(right). The model of upper body consists of 6 parts.
In the fitting process, the characteristic point of the body, head peak HT
is searched first. Then from HT, center of neck N, right shoulder S, and left
shoulder S; are searched in this order. From the neck N, trunk of the body is
scanned and waist center Wis located. From the shoulders S, and Sy, each arm is
scanned toward hand, and elbow joint E;, E,, and hand tips Hy, H, are located.

4 Experiment

To confirm our idea, we conducted three experiments. First, we have examined
the pose estimation accuracy of our method using life size figure of a human.
Our experiments ware carried out in a laboratory shown in Figure. 1(left) with
9 cameras. This multiple camera system was calibrated in advance, and its voxel
resolution is 2cm, its frame rate is 9 fps. The pose estination result shows the
worst angular error of arms, waist, and head are 13.8deg, 7.0deg, and 6.0deg
respectively. This error is acceptable for self-load estimation. However, the fitting
algorithm sometimes failed when arms are contacted in parallel to trunk of the
body. More robust fitting algorithm are required for future work.

4.1 Self-load measurement

In this experiments, we evaluated correlation between task complexity and self-
load measure. We designed two scenarios. Each of them has three different levels
of complexity. Total 7 subjects participated in the experimnets. The set up is
shown in Figure 2(left). Due to limitation of the 3D reconstruction space, the
pose of the subject is limited to a sitting pose and we couldn’t fit lower body in
this setup.

Before the real experiment, the subject are required to wait until the experi-
ment is ready. During this period, which is 28sec long, a TV program is displayed
on the PC screen and neutral pose are measured. From the measurement, we
calculated the initial self-load for each subject.

In the first experiment, which we refer to as “clap test”, a white box in
the black background on another PC screen appeared 4 times during the 28sec



Fig. 2. Self-load measurement set up. (left) — 1: Desk, 2: Stool, 3: Task Screen, 4: TV
Screen —, and a snap shot of the clap test
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Fig. 3. Screen shown to the subject during clap test
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session. A subject was requested to clap his/her hands, when he/she recognize
a white box before it disappears. The duration of white box is same in a ses-
sion but it becomes shorter, shown in Figure. 3, and the task becomes harder.
Each subject performs three sessions and self-load is measured for each session.
Figure. 2(right) shows one of the snapshot during this experiment.

In the second experiment, which we refer to as “catch test”, a button with
“START” mark and a moving box with “CATCH” mark, shown in Figure. 4(left),
are displayed on the screen. A session starts when the subject clicks the mouse
on “START”, then “CATCH” starts running on the screen. The subject is re-
quested to follow the moving box and click the mouse when it is on “CATCH”
mark. The subject is requested to catch as many box as possible during the 28
sec session. The moving box randomly changes its direction but the velocity is
the same within a session. The velocity increases 200, 400, 600 (pixel/sec) as
the level of session increases. During the session, each subject performs three
sessions with different complexity and self-load is measured. Figure 4(right) is a
snap shot during this experiment.

4.2 Result and discussion

The initial self-load sly measured before the experiment is distributed from 400 to
474. As we discussed in Section. 2, the initial self-load depends on the body shape
and initial pose of the subject and it does not have importance. In the following
two experiments, self-load SL is normalized, and replaced by SL' = SL/sly.
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Fig. 4. Screen shown to the subject during the catch test (left) and a snap shot of the
experiment (right)
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Fig. 5. Comprexity of test and self-load SL(%)

Figure. 5 (A) and (B) show the relationships of SL measure and complexity
level of clap test and catch test respectively. Both of the figures show the strong
correlation between SL and the complexity level, suggesting that SL can be
used as the index of concentration.

In both tests, there are several subjects whose SL drops at level 3 complexity.
However, it proved that some of them are moving their hand so fast and the
system cannot recover the 3D volume due to the motion blur. The rest of them
are those who gave up performing the requested task and not involved any more.
So, those samples, which look conflicting with our estimation, do not conflict
actually. Such samples are rejected from the Figures.

The difference between clap test and catch test is that catch test requires
the subject continuous motion in proportion to the complexity. This implies
contribution of kinetic energy to self-load increases as the complexity increases.
However, we found that most of the dominant increase is posture maintaining
energy. This suggests that concentration will appear as leaning forward pose.
The result will match the previous work by Motal6].



5 Conclusion

A feasibility study on observing human concentration with multiple cameras is
described. A new measure, which is referred to as self-load, is proposed. Self-
load is a energy consumption of the observed human keeping the same pose
and motion. The pose is estimated from the 3D volumetric representation of the
observed human and it is derived from 3D shape reconstruction technique like
visual hull.

Through two scenarios of evaluation, we confirmed strong correlation be-
tween self-load and concentration. Also, we discovered leaning forward pose is
appearing when a human is concentrating to a task. Currently, the situation in
which we can measure self-load is limited due to the limitation of pose fitting
and invisible force of the observed human. Never the less, it is a epoch that
estimating human internal state with images is feasible.

Further study will include wider range of scenario to observe human con-
centration, estimation of human state other than concentration, and integration
with other modality such as face recognition, sight line recognition, and speech
recognition.
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