Skip to main content

On Regular and Logarithmic Solutions of Ordinary Linear Differential Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3718))

Included in the following conference series:

  • 884 Accesses

Abstract

We present an approach to construct all the regular solutions of systems of linear ordinary differential equations using the desingularization algorithm of Abramov & Bronstein (2001) as an auxiliary tool. A similar approach to find all the solutions with entries in C(z) [log z] is presented as well, together with a new hybrid method for constructing the denominator of rational and logarithmic solutions.

Work partially supported by the ECO-NET program of the French Foreign Affairs Ministry, project No. 08119TG, and by RFBR grant No. 04-01-00757.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramov, S.: EG–eliminations. Journal of Difference Equations and Applications 5, 393–433 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: Proceedings of ISSAC 2001, pp. 1–6. ACM Press, New York (2001)

    Chapter  Google Scholar 

  3. Abramov, S., Bronstein, M., Khmelnov, D.: Regularization of linear recurrence systems. Transactions of the A.M. Liapunov Institute 4, 158–171 (2003)

    Google Scholar 

  4. Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of ISSAC 1995, pp. 290–296. ACM Press, New York (1995)

    Chapter  Google Scholar 

  5. Barkatou, M.A.: On rational solutions of systems of linear differential equations. Journal of Symbolic Computation 28, 547–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barkatou, M., Pflügel, E.: An algorithm computing the regular formal solutions of a system of linear differential equations. Journal of Symbolic Computation 28, 569–587 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bronstein, M., Trager, B.: A reduction for regular differential systems. In: CD-ROM, Proceedings of MEGA 2003 (2003)

    Google Scholar 

  8. Coddington, E., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Frobenius, G.: Über die Integration der linearen Differentialgleichungen mit veränder Koefficienten. Journal für die reine und angewandte Mathematik 76, 214–235 (1873)

    Article  Google Scholar 

  10. Heffter, L.: Einleitung in die Theorie der linearen Differentialgleichungen. Teubner, Leipzig (1894)

    MATH  Google Scholar 

  11. Hilali, A., Wazner, A.: Formes super–irréductibles des systèmes différentiels linéaires. Numerical Mathematics 50, 429–449 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular singularities. Journal of Symbolic Computation 31, 717–743 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational Complexity 13, 91–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Poole, E.: Introduction to the Theory of Linear Differential Equations. Dover Publications Inc., New York (1960)

    MATH  Google Scholar 

  15. Storjohann, A., Villard, G.: Computing the rank and a small nullspace basis of a polynomial matrix. In: Proceedings of ISSAC 2005. ACM Press, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abramov, S.A., Bronstein, M., Khmelnov, D.E. (2005). On Regular and Logarithmic Solutions of Ordinary Linear Differential Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_1

Download citation

  • DOI: https://doi.org/10.1007/11555964_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics