Abstract
We present an approach to construct all the regular solutions of systems of linear ordinary differential equations using the desingularization algorithm of Abramov & Bronstein (2001) as an auxiliary tool. A similar approach to find all the solutions with entries in C(z) [log z] is presented as well, together with a new hybrid method for constructing the denominator of rational and logarithmic solutions.
Work partially supported by the ECO-NET program of the French Foreign Affairs Ministry, project No. 08119TG, and by RFBR grant No. 04-01-00757.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramov, S.: EG–eliminations. Journal of Difference Equations and Applications 5, 393–433 (1999)
Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: Proceedings of ISSAC 2001, pp. 1–6. ACM Press, New York (2001)
Abramov, S., Bronstein, M., Khmelnov, D.: Regularization of linear recurrence systems. Transactions of the A.M. Liapunov Institute 4, 158–171 (2003)
Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of ISSAC 1995, pp. 290–296. ACM Press, New York (1995)
Barkatou, M.A.: On rational solutions of systems of linear differential equations. Journal of Symbolic Computation 28, 547–567 (1999)
Barkatou, M., Pflügel, E.: An algorithm computing the regular formal solutions of a system of linear differential equations. Journal of Symbolic Computation 28, 569–587 (1999)
Bronstein, M., Trager, B.: A reduction for regular differential systems. In: CD-ROM, Proceedings of MEGA 2003 (2003)
Coddington, E., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill, New York (1955)
Frobenius, G.: Über die Integration der linearen Differentialgleichungen mit veränder Koefficienten. Journal für die reine und angewandte Mathematik 76, 214–235 (1873)
Heffter, L.: Einleitung in die Theorie der linearen Differentialgleichungen. Teubner, Leipzig (1894)
Hilali, A., Wazner, A.: Formes super–irréductibles des systèmes différentiels linéaires. Numerical Mathematics 50, 429–449 (1987)
van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular singularities. Journal of Symbolic Computation 31, 717–743 (2001)
Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational Complexity 13, 91–130 (2004)
Poole, E.: Introduction to the Theory of Linear Differential Equations. Dover Publications Inc., New York (1960)
Storjohann, A., Villard, G.: Computing the rank and a small nullspace basis of a polynomial matrix. In: Proceedings of ISSAC 2005. ACM Press, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abramov, S.A., Bronstein, M., Khmelnov, D.E. (2005). On Regular and Logarithmic Solutions of Ordinary Linear Differential Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_1
Download citation
DOI: https://doi.org/10.1007/11555964_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28966-1
Online ISBN: 978-3-540-32070-8
eBook Packages: Computer ScienceComputer Science (R0)