Skip to main content

Construction of Two Level Orthogonal Arrays Via Solutions of Linear Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3718))

Included in the following conference series:

  • 866 Accesses

Abstract

In this paper we present a method that uses solutions of linear systems to construct all possible orthogonal arrays OA(n,q,2,2 + ), when 3 ≤ q ≤ 6. A note on its complexity is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clark, J.B., Dean, A.M.: Equivalence of fractional factorial designs. Statistica Sinica 11, 537–547 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Colbourn, C.J., Dinitz, J.H., Stinson, D.R.: Applications of combinatorial designs to communications, cryptography, and networking, Surveys in Combinatorics, Canterbury. London Math. Soc. Lecture Note Ser, vol. 267, pp. 37–100. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  3. Fang, K.-T., Ge, G.: A sensitive algorithm for detecting the inequivalence of Hadamard matrices. Mathematics of Computation 73, 843–851 (2003)

    Article  MathSciNet  Google Scholar 

  4. Georgiou, S., Koukouvinos, C.: New visual cryptographic schemes derived from orthogonal and mixed orthogonal arrays. J. Discrete Math. Sci. Cryptogr. 7, 291–306 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999)

    MATH  Google Scholar 

  6. Li, Y.: New factorial designs that cannot be embedded into Hadamard matrices. Int. J. Math. 2, 527–534 (2002)

    MATH  Google Scholar 

  7. Ma, C.-X., Fang, K.-T., Lin, D.K.J.: On the isomorphism of fractional factorial designs. Journal of Complexity 17, 86–97 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Stinson, D.R.: Combinatorial Designs: Construction and Analysis. Springer, New York (2004)

    Google Scholar 

  9. Stinson, D.R.: Cryptography: Theory and Practice, 2nd edn. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koukouvinos, C., Lappas, E. (2005). Construction of Two Level Orthogonal Arrays Via Solutions of Linear Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_24

Download citation

  • DOI: https://doi.org/10.1007/11555964_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics