Skip to main content

Contour Tracking Using Modified Canny Edge Maps with Level-of-Detail

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3691))

Included in the following conference series:

  • 1176 Accesses

Abstract

We propose a simple but powerful method for tracking a nonparameterized subject contour in a single video stream with a moving camera and changing background for the purpose of video background removal to capture motion in a scene. Our method is based on level-of-detail (LOD) modified Canny edge maps and graph-based routing operations on the LOD maps. We generated modified Canny edge maps by computing intensity derivatives in a normal direction of a previous frame contour to remove irrelevant edges. Computing Canny edge maps in the previous contour normal direction have effects of removing irrelevant edges. LOD Canny edge maps are generated by changing scale parameters for a given image. A simple (strong) Canny edge map, Scanny, has the smallest number of edge pixels while the most detailed Canny edge map, Wcanny N , has the largest number of edge pixels. To reduce side-effects because of irrelevant edges, we start our basic tracking by using Scanny edges generated from large image intensity gradients of an input image. Starting from Scanny edges, we get more edge pixels ranging from simple Canny edge maps until the most detailed (weaker) Canny edge maps, called Wcanny maps along LOD hierarchy. LOD Canny edge pixels become nodes in routing, and LOD values of adjacent edge pixels determine routing costs between the nodes. We find the best route to follow Canny edge pixels favoring stronger Canny edge pixels. If Scanny edges are disconnected, routing between disconnected parts are planned using Wcanny edges in LOD hierarchy. Our accurate tracking is based on reducing effects from irrelevant edges by selecting the stronger edge pixels, thereby relying on the current frame edge pixel as much as possible contrary to other approaches of always combining the previous contour. Our experimental results show that this tracking approach is robust enough to handle a complex-textured scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Park, J., Kim, T.-Y., Park, S.: LOD canny edge based boundary edge selection for human body tracking. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 528–535. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  3. Peterfreund, N.: Robust tracking of position and velocity with kalman snakes. IEEE Trans. on Pattern Analysis and Machine Intelligence 21, 564–569 (1999)

    Article  Google Scholar 

  4. Fu, Y., Erdem, A.T., Tekalp, A.M.: Tracking visible boundary of objects using occlusion adaptive motion snake. IEEE Trans. on Image Processing 9, 2051–2060 (2000)

    Article  Google Scholar 

  5. Nguyen, H.T., Worring, M., van den Boomgaard, R., Smeulders, A.W.M.: Tracking nonparameterized object contours in video. IEEE Trans. on Image Processing 11, 1081–1091 (2002)

    Article  Google Scholar 

  6. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definition, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Nguyen, H.T., Worring, M., van den Boomgaard, R.: Watersnakes: energy-driven watershed segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 330–342 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, J. (2005). Contour Tracking Using Modified Canny Edge Maps with Level-of-Detail. In: Gagalowicz, A., Philips, W. (eds) Computer Analysis of Images and Patterns. CAIP 2005. Lecture Notes in Computer Science, vol 3691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556121_1

Download citation

  • DOI: https://doi.org/10.1007/11556121_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28969-2

  • Online ISBN: 978-3-540-32011-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics