Skip to main content

Memory Hierarchy Energy Cost of a Direct Filtering Implementation of the Wavelet Transform

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3728))

  • 1315 Accesses

Abstract

A new implementation of the Wavelet Transform (WT), foregoing the traditional recursive filtering operations and with promising memory requirement properties is described: the Direct Filtering implementation. Its memory hierarchy energy performance is compared to the traditional Level-By-Level implementation and the memory optimized Block-based approach. This comparison is performed using the Memory Hierarchy Layer Assignment tool (MHLA). The results indicate the Direct Filtering implementation described here as such is not a likely candidate to replace the other implementations, but it has improvement possibilities and characteristics that can make it useful in certain contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Catthoor, F., Wuytack, S., De Greef, E., Balasha, S., Nachtergaele, L., Vandecappelle, A.: Custom Memory Management Methodology. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  2. Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Kim, H.Y., Ye, W.: Energy-driven integrated hardware software optimizations using simplepower. In: Proc. Int. Symp. on Computer Architecture (2000)

    Google Scholar 

  3. Skodras, A., Christopoulos, C., Ebrahimi, T.: The jpeg2000 still image compression standard. IEEE Signal Processing Magazine 9, 36–58 (2001)

    Article  Google Scholar 

  4. Sodagar, I., Lee, H., Hatrack, P., Zhang, Y.: Scalable wavelet coding for synthetic/natural hybrid images. IEEE Trans. on Circuits and Systems for Video Technology 9, 244–254 (1999)

    Article  Google Scholar 

  5. MPEG: Call for proposals on scalable video coding technology. In (2003), http://www.chiariglione.org/MPEG/working_documents/mpeg-04/svc/cfp.zip

  6. Masselos, K., Catthoor, F., Kakarudas, A., Goutis, C., De Man, H.: Memory hierarchy layer assignment for data re-use exploitation in multimedia algorithms realized on predefined processor architectures. In: The 8th IEEE Int. Conf. on Electronics, Circuits and Systems - ICECS, vol. 1, pp. 281–287 (2001)

    Google Scholar 

  7. Van Achteren, T., Lauwereins, R., Catthoor, F.: Data reuse exploration techniques for loop-dominated applications. In: Proc. 5th ACM/IEEE Design and Test in Europe Conf. - DATE, pp. 428–435 (2002)

    Google Scholar 

  8. Zervas, N.D., Anagnostopoulos, G.P., Spiliotopoulos, V., Andreopoulos, Y., Goutis, C.: Evaluation of design alternatives for the 2d-discrete wavelet transform. IEEE Trans. on Circuits and Systems for Video Technology 11, 1246–1262 (2001)

    Article  Google Scholar 

  9. Geelen, B., Brockmeyer, E., Durinck, B., Lafruit, G., Lauwereins, R.: Alleviating memory bottlenecks by software-controlled data transfers in a data-parallel wavelet transfor on a multicore dsp. In: Proc. IEEE Sig. Proc. Symp. SPS-DARTS (2005)

    Google Scholar 

  10. AnalogDevices: Analog devices blackfin processors. In (2005), http://www.analog.com/processors/processors/blackfin

  11. Woods, J.W., O’Neil, S.: Subband coding of images. IEEE Trans. on Acoust., Speech and Signal Processing 34, 1278–1288 (1986)

    Article  Google Scholar 

  12. Woods, J.W.: Subband Image Coding. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  13. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  14. Van der Auwera, G., Munteanu, A., Schelkens, P., Cornelis, J.: Bottom-up motion compensated prediction in the wavelet domain for spatially scalable video coding. IEEE Electronics Letters 38, 1251–1253 (2002)

    Article  Google Scholar 

  15. Woods, J.W.: A resolution and frame-rate scalable subband/wavelet video coder. IEEE Trans. on Circuits and Systems for Video Technology 11, 1035–1044 (2001)

    Article  Google Scholar 

  16. Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  17. Lafruit, G., Nachtergaele, L., Bormans, J., Engels, M., Bolsens, I.: Optimal memory organization for scalable texture codecs in mpeg-4. IEEE Trans. on Circuits and Systems for Video Technology 9, 218–243 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geelen, B., Lafruit, G., Ferentinos, V., Lauwereins, R., Verkest, D. (2005). Memory Hierarchy Energy Cost of a Direct Filtering Implementation of the Wavelet Transform. In: Paliouras, V., Vounckx, J., Verkest, D. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2005. Lecture Notes in Computer Science, vol 3728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556930_12

Download citation

  • DOI: https://doi.org/10.1007/11556930_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29013-1

  • Online ISBN: 978-3-540-32080-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics