Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3728))

  • 1297 Accesses

Abstract

Clock distribution has become an increasingly challenging problem for VLSI designs because of the increase in die size and integration levels, along with stronger requirements for integrated circuit speed and reliability. Additionally, the great amount of synchronous hardware in integrated circuits makes current requirements to be very large at very precise instants. This paper presents a new approach for clock distribution in PID controllers based on RNS, where channel independence removes clock timing restrictions. This approach generates several clock signals with non-overlapping edges from a global clock. The resulting VLSI RNS-enabled PID controller, shows a significant decrease in current requirements (the maximum current spike is reduced to a 14% of single clock distribution one at 125 Mhz) and a homogeneous time distribution of current supply to the chip, while keeping extra hardware and power to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aström, K.J., Hägglund, T.: PID Control. Theory, Design and Tunning, 2ended., Instrument Society of America. Research Triangle Par., NC (1995)

    Google Scholar 

  2. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and Its Applications to Computer Technology. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  3. Parrilla, L., García, A., Lloris, A.: Implementation of High Performance PID Controllers using RNS and Field-Programmable Devices. In: Proc. of 2000 IFAC Workshop on Digital Control PID 2000, Terrassa, April 5-7, pp. 628–631 (2000)

    Google Scholar 

  4. Yuan, J., Svensson, C.: High-speed CMOS Circuit Technique. IEEE Journal of Solid State Circuits 24(1), 62–70 (1989)

    Article  Google Scholar 

  5. Bailey, D.W., Benchsneider, B.J.: Clocking Design and Analysis for a 600-MHz Alpha Microprocessor. IEEE Journal of Solid State Circuits 33, 1627–1633 (1998)

    Article  Google Scholar 

  6. Ramanathan, P., Dupont, A.J., Shin, K.G.: Clock Distribution in General VLSI Circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41(5), 395–404 (1994)

    Article  Google Scholar 

  7. Yoo, J., Gopalakrishnan, G., Smith, K.F.: Timing Constraints for High-speed Counterflowclocked Pipelining. IEEE Transactions on VLSI Systems 7(2), 167–173 (1999)

    Article  Google Scholar 

  8. Grover, W.D.: A New Method for Clock Distribution. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41(2), 149–160 (1994)

    Article  Google Scholar 

  9. Jackson, M.A.B., Srinivasan, A., Kuh, E.S.: Clock Routing for High Performance IC.s. In: 27th ACM/IEEE Design Automation Conference (1990)

    Google Scholar 

  10. Wann, D.F., Franklin, N.A.: Asynchronous and Clocked Control Structures for VLSI Based Interconnect Networks. IEEE Transactions on Computers 32(5), 284–293 (1983)

    Article  Google Scholar 

  11. Hatamian, M.: Chapter 6, Understanding clock skew in synchronous systems. In: Tewksbury, S.K., Dickinson, B.W., Schwartz, S.C. (eds.) Concurrent Computations (Algorithms, Architecture, and Technology), pp. 87–96. Plenum Publishing, New York (1988)

    Google Scholar 

  12. Friedman, E.G.: Clock Distribution Networks in Synchronous Digital Integrated Circuits. Proceedings of the IEEE 89(5) (2001)

    Google Scholar 

  13. Friedman, E.G., Powell, S.: Design and Analysis of an Hierarchical Clock Distribution System for Synchronous Cell/macrocell VLSI. IEEE Journal of Solid State Circuits 21(2), 240–246 (1986)

    Article  Google Scholar 

  14. Shoji, M.: Elimination of Process-dependent Clock skew in CMOS VLSI. IEEE Journal of Solid State Circuits 21, 869–880 (1986)

    Article  Google Scholar 

  15. Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J.: Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Los Alamitos (1986)

    MATH  Google Scholar 

  16. MOSIS Process Information: Hewlett Packard AMOS14TB, http://www.mosis.org/technical/processes/proc-hp-amos14tb.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González, D., Parrilla, L., García, A., Castillo, E., Lloris, A. (2005). Efficient Clock Distribution Scheme for VLSI RNS-Enabled Controllers. In: Paliouras, V., Vounckx, J., Verkest, D. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2005. Lecture Notes in Computer Science, vol 3728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556930_67

Download citation

  • DOI: https://doi.org/10.1007/11556930_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29013-1

  • Online ISBN: 978-3-540-32080-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics