Skip to main content

Power Dissipation Impact of the Technology Mapping Synthesis on Look-Up Table Architectures

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3728))

  • 1286 Accesses

Abstract

This paper presents a study of the power dissipation repercussion on the logic and physical synthesis using LUT architectures. It is observed that the same function with different mappings on a LUT show different power dissipation. In concrete, the study reveals that the difference depends on the number of inputs of the Boolean function mapped. A power model based on this concept is developed. The power model is used to analyze the efficiency of the synthesis concerning power dissipation in LUTs. Also, a study of the fan-out and the function mapped is done. A power cost model is created to associate the fan-out and our power model. A set of circuits have been synthesized with an academic FPGA synthesis tool. The synthesis tool is used with the options of optimal delay, optimal area and delay-area trade-off. Our study shows that, in this case, synthesizing for area or delay does not affect the power dissipation. Three different LUT architectures have been studied. Results show that a four input LUT is a good choice concerning power dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, S., Francis, R., Rose, J., Vranesic, Z.: Field-Programmable Gate Arrays. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  2. HardCopy Series Handbook, Altera Inc. (2005), http://www.altera.com

  3. Chen, D., Cong, J., Li, F., He, L.: Low-Power Technology Mapping for FPGA Architectures with Dual Supply Voltages. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays (2004)

    Google Scholar 

  4. Alexander, M.J.: Power Optimization for FPGA Look-up Tables. In: Proceedings of ACM 1997 International Symposium on Physical Design, pp. 156–162 (1997)

    Google Scholar 

  5. Vuilled, P., Benini, L., DeMicheli, G.: Re-Mapping for Low Power Under Tight Timing Constraints. In: ISPLED 1997, August 1997, pp. 156–162 (1997)

    Google Scholar 

  6. Lamoureux, J., Wilton, S.J.: On the interaction between power-aware FPGA algorithms. In: Proceedings of International Conference in Computer-Aided Design, pp. 701–708 (2003)

    Google Scholar 

  7. Li, F., Chen, D., He, L., Cong, J.: Architecture evaluation for power-efficient FPGAs. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays (2003)

    Google Scholar 

  8. Lin, Y., Li, F., He, L.: Power Modeling and Architecture Evaluation for FPGA with Novel Circuits for Vdd Programmability. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays (2005)

    Google Scholar 

  9. Poon, K., Yan, A., Wilton, S.J.: A flexible power model for FPGAs. In: Proceedings of 12th International Conference on Field-Programmable Logic and Applications (September 2002)

    Google Scholar 

  10. George, V., Zhang, Z., Rabaey, J.: The Design of a low Energy FPGA. In: Proceedings of ACM 1999 International Symposium on Low Power Electronics and Design, August 1999, pp. 188–193 (1999)

    Google Scholar 

  11. Calhoun, B.H., Honore, F.A., Chandrakassan, A.P.: A Leakage Reduction Methodology for Distributed MTCMOS. IEEE Journal of the Solid-State Circuits, 818–826 (May 2004)

    Google Scholar 

  12. Anderson, J.H., Najm, F.N., Tuan, T.: Active Leakage Power Optimization for FPGA. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays, pp. 33–41 (2004)

    Google Scholar 

  13. Weste, N.H.E., Eshraghian, K.: Principles of CMOS VLSI Design. In: A System Perspective, 2nd edn., Addison Wesley Longman, Amsterdam (1993)

    Google Scholar 

  14. Kusse, E.A., Rabaey, J.: Low-Energy FPGA Structures. In: Proceedings of ACM 1998 International Symposium on Low Power Electronics and Design, August 1998, pp. 155–160 (1998)

    Google Scholar 

  15. Shang, L., Kaviani, A.S., Bathala, K.: Dynamic Power Consumption in Virtex-II FPGA Family. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays, pp. 157–164 (2002)

    Google Scholar 

  16. Gayasen, A., Tsai, Y., Vijaykrishnan, K.M., Irwin, M.J.: Reducing Leakage Energy in FPGAs Using Region-Constrained Placement. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays (2004)

    Google Scholar 

  17. Yang, S.: Logic Synthesis and Optimization Benchmarks, Version 3.0. Tech. Report. Microelectronics Centre of North Carolina (1991)

    Google Scholar 

  18. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  19. Veredas-Ramirez, F.J., Scheppler, M., Pfleiderer, H.-J.: A Survey on Reconfigurable Computing Systems: Taxonomy and Metrics. In: Proceedings of the IV Workshop on Reconfigurable Computing and Applications, September 2004, pp. 25–36 (2004)

    Google Scholar 

  20. Sentovich, E.M.: SIS: A System for Sequential Circuit Analysis. Tech. Report No. UCB/ERL M92/41, Univeristy of California, Berkeley (1992)

    Google Scholar 

  21. Cong, J., Peck, J., Ding, Y.: RASP: A General Logic Synthesis System for SRAM-based FPGAs. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays, pp. 137–143 (1996)

    Google Scholar 

  22. Cong, J., Hwang, Y.: Simultatious Depth and Area Minimization in LUT-Based FPGA Mapping. In: Proceedings of ACM/SIGDA International Symposium on Fieldprogrammable Gate Arrays, pp. 68–74 (1995)

    Google Scholar 

  23. Cong, J., Ding, Y.: FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table based FPGA Designs. IEEE Trans. On CAD, 1–12 (January 1994)

    Google Scholar 

  24. Cong, J., Ding, Y.: On Area/Depth Trade-off in LUT-Based FPGA Technology Mapping. IEEE Trans. On VLSI Systems, 137–148 (June 1994)

    Google Scholar 

  25. Chen, D., Cong, J., Li, F., He, L.: Low-Power Technology Mapping for FPGA Architectures with Dual Supply Voltages. In: Proceedings of ACM/SIGDA International Symposium on Field-programmable Gate Arrays (2004)

    Google Scholar 

  26. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  27. Anderson, J.H., Najm, F.N.: Power Estimation Techinques for FPGAs. IEEE Transactions on VLSI Systems, 1015–1027 (October 2004)

    Google Scholar 

  28. George, V., Rabaey, J.: Low-Energy FPGAs: Architecture and Design. Kluwer, Dordrecht (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veredas, FJ., Carrabina, J. (2005). Power Dissipation Impact of the Technology Mapping Synthesis on Look-Up Table Architectures. In: Paliouras, V., Vounckx, J., Verkest, D. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2005. Lecture Notes in Computer Science, vol 3728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556930_68

Download citation

  • DOI: https://doi.org/10.1007/11556930_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29013-1

  • Online ISBN: 978-3-540-32080-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics