Skip to main content

Tree-Structured Legendre Multi-wavelets

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2005 (EUROCAST 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3643))

Included in the following conference series:

  • 1292 Accesses

Abstract

We address the problem of constructing multi-wavelets, that is, wavelets with more than one scaling and wavelet function. We generalize the algorithm, proposed by Alpert [1] for generating discrete Legendre multi-wavelets to the case of arbitrary, non-dyadic time interval splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, B.: A class of bases in L2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24, 246–262 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpert, B., Beylkin, G., Coifman, R., Rochlin, V.: Wavelet bases for the fast solution of second-kind integral equations. SIAM Journal on Scientific Computing 14 (1), 159–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Egiazarian, K., Astola, J.: Tree-structured Haar transforms. Journal of Mathematical and Imaging Vision 16, 267–277 (2002)

    Google Scholar 

  4. Gotchev, A., Egiazarian, K., Astola, J.: On tree-structured legendre multi-wavelet bases. In: Proc. Int. Workshop on Spectral Methods and Multirate Signal Processing (SMMSP 2001), pp. 51–56 (2001)

    Google Scholar 

  5. Pogossova, E., Egiazarian, K., Astola, J.: Signal de-noising in tree-structured Haar basis. In: Guo, M. (ed.) ISPA 2003. LNCS, vol. 2745, pp. 736–739. Springer, Heidelberg (2003)

    Google Scholar 

  6. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  7. Resnikoff, H.L., Wells Jr., R.O.: Wavelet Analysis. Springer, New York (1998)

    MATH  Google Scholar 

  8. Strela, V., Heller, P.N., Strang, G., Topiwala, P., Heil, C.: The application of muti-wavelet filter banks to signal and image processing. IEEE Trans. on Image Proc. 8(4), 548–563 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pogossova, E., Egiazarian, K., Gotchev, A., Astola, J. (2005). Tree-Structured Legendre Multi-wavelets. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2005. EUROCAST 2005. Lecture Notes in Computer Science, vol 3643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556985_39

Download citation

  • DOI: https://doi.org/10.1007/11556985_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29002-5

  • Online ISBN: 978-3-540-31829-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics