Skip to main content

Current and Future Trends and Challenges in Robot Soccer

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2005 (EUROCAST 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3643))

Included in the following conference series:

  • 1297 Accesses

Abstract

Robot soccer has evolved into a very dynamic and competitive field within the last few years. Many different robot soccer leagues now exist, the league most strongly dedicated to entertainment and edutainment is currently FIRA MiroSot. It has now reached 11 vs. 11 robots sized 7.5 x 7.5 x 7.5 cm on a 440 x 280 cm field and is therefore the first robot soccer league to physically play 11 vs. 11 games. This paper aims to provide a short status report and introduction into current problems and possible solutions within the challenging areas of FIRA MiroSot robot soccer created by having 22 robots on the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kim, J.-H., Kim, D.-H., Kim, Y.-J., Seow, K.-T.: Springer Tracts in Advanced Robotics. In: Soccer Robotics, vol. 11. Springer, Heidelberg (2004)

    Google Scholar 

  2. Reusch, B., et al.: Endbericht der Projektgruppe 340 – Roboterfußball. Internal Reports of the Department of Computer Science of the University of Dortmund, Dortmund, Germany (2000) (in German)

    Google Scholar 

  3. Veloso, M., et al.: The CMUnited-98 Champion Small Robot Team. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 77–92. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Kim, Y.-J., Kim, J.-K., Kwon, D.-S.: Evolutionary programming-based uni-vector field navigation method for fast mobile robots. IEEE Trans. on Systems, Man and Cybernetics, Part B 31(3), 450–458 (2001)

    Article  Google Scholar 

  5. Kim, D.-H., Kim, J.-H.: A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer. Robotics and Autonomous Systems 42(1), 17–30 (2003)

    Article  MATH  Google Scholar 

  6. Hildebrand, L., Reusch, B., et al.: Path Planning For Mobile Robots Using The S-Curve Algorithm. In: Proc. FIRA World Congress 2003, Vienna, Austria (2003)

    Google Scholar 

  7. High Qualified Soccer Robot for Undergraduates & General Teams YSR-A. Yujin Robotics Co., Seoul, Korea (2005), http://www.edrobot.com/english/product/ysra.asp

  8. Educational & Match Soccer Robot for Elementary & Middle Students VICTO. Yujin Robotics Co., Seoul, Korea (2005), http://www.edrobot.com/english/product/victo.asp

  9. Putz, B.: Development of the new Soccer Robots “Roby-Speed” AND “Roby-Naro”. In: Proc. CLAWAR/EURON ELH 2004, Vienna, Austria (2004)

    Google Scholar 

  10. Klute, T., Weiss, N., Schulz, S., Pfeifer, T.: A DSP-based Soccer Robot for FIRA MiroSot. In: Proc. 16th IFAC World Congress, Prague, Czech Republic (2005) (to be published)

    Google Scholar 

  11. Clarke, T.A., Fryer, J.G.: The Development of Camera Calibration Methods and Models. Photogrammetric Record 16(91), 51–66 (1998)

    Article  Google Scholar 

  12. Simon, M., Behnke, S., Rojas, R.: Robust Real Time Color Tracking. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 239–248. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Bouguet, J.-Y.: Camera Calibration Toolbox for Matlab. California Institute of Technology, Pasadena, CA, USA (2004), http://www.vision.caltech.edu/~bouguetj/calib_doc/index.html

  14. Open Source Computer Vision Library. Intel Corp., Santa Clara, CA, USA (2004), http://www.intel.com/research/mrl/research/opencv/index.htm

  15. Zhang, Z.-Y.: A Flexible New Technique for Camera Calibration. PAMI 22(11), 1330–1334 (2000)

    Google Scholar 

  16. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proc. CVPR 1997, San Juan, Puerto Rico, pp. 1106–1112 (1997)

    Google Scholar 

  17. Weiss, N., Jesse, N.: Towards Local Vision in Centralized Robot Soccer Leagues: A Robust And Flexible Vision System Also Allowing Varying Degrees of Robot Autonomy. In: Proc. FIRA World Congress 2004, Busan, Korea (2004)

    Google Scholar 

  18. Weiss, N., Hildebrand, L.: An exemplary Robot Soccer Vision System. In: Proc. CLAWAR/ EURON ELH 2004, Vienna, Austria (2004)

    Google Scholar 

  19. Hildebrand, L., Michalski, C., Valentin, H., Wickrath, M.: Strategy Implementation For Mobile Robots Using The Pipes & Filters Architecture. In: Proc. FIRA World Congress 2003, Vienna, Austria (2003)

    Google Scholar 

  20. Zhang, Y.-D., Min, F.: Application of Reinforcement Learning Based on Artificial Neural network to Robot Soccer. In: Proc. FIRA World Congress 2004, Busan, Korea (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiss, N., Reusch, B. (2005). Current and Future Trends and Challenges in Robot Soccer. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2005. EUROCAST 2005. Lecture Notes in Computer Science, vol 3643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556985_73

Download citation

  • DOI: https://doi.org/10.1007/11556985_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29002-5

  • Online ISBN: 978-3-540-31829-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics