Skip to main content

A Non-redundant and Efficient Architecture for Karatsuba-Ofman Algorithm

  • Conference paper
Information Security (ISC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3650))

Included in the following conference series:

Abstract

The divide-and-conquer method is efficiently used in parallel multiplier over finite field GF(2n). Leone proposed optimal stop condition for iteration of Karatsuba-Ofman algorithm (KOA). Multi-segment Karatsuba method (MSK) is proposed by Ernst et al. In this paper, we propose a Non-Redundant Karatsuba-Ofman algorithm (NRKOA) with removing redundancy operations, and design a parallel hardware architecture based on the proposed algorithm. Comparing with existing related Karatsuba architectures with the same time complexity, the proposed architecture reduces the area complexity. The proposed NRKOA multiplier has more efficient the space complexity than the previous KOA multipliers, where n is a prime. Furthermore, the space complexity of the proposed multiplier is reduced by 43% in the best case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSI X9.62, Public key cryptography for the financial services industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) (available from the ANSI X9 catalog) (1999)

    Google Scholar 

  2. Cohen, H.: A Course in Computational Algebric Number Theory. Springer, Heidelberg (1993)

    Google Scholar 

  3. Drolet, G.: A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic circuit. IEEE Trans. on Computers 47, 353–356 (1998)

    Article  MathSciNet  Google Scholar 

  4. Ernst, M., Jung, M., Madlener, F., Huss, S., Blümel, R.: A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over GF(2n). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 381–399. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. IEEE 1363, Standard Specifications For Public Key Cryptography (2000), http://grouper.ieee.org/groups/1363/

  6. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)

    Book  MATH  Google Scholar 

  7. Koc, C.K., Sunar, B.: Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields. In: Proceeding of 1998 IEEE International Symposium on Information Theory, August 16-21, pp. 294–294. MIT, Cambridge (1998)

    Google Scholar 

  8. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leone, M.: A New Low Complexity Parallel Multiplier for a Class of Finite Fields. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 160–170. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Miller, V.: Use of Elliptic Curve Cryptosystems. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  11. Paar, C.: Efficient VLSI Architecture for Bit-Parallel Computation in Galois Fields, PhD thesis (Engl. transl.), Institute for Experimental Mathematics, University of Essen, Essen, Germany (June 1994)

    Google Scholar 

  12. Paar, C.: Low complexity parallel Multipliers for Galois fields GF((2n)4) based on special types of primitive polynomials. In: 1994 IEEE International Symposium on Information Theory, Trondheim, Norway (June 27-July 1, 1994)

    Google Scholar 

  13. Paar, C.: A new architecture for a parallel finite fields multiplier with Low Complexity Based on Composite Fields. IEEE Trans. on Computers 45(7), 846–861 (1996)

    Article  MathSciNet  Google Scholar 

  14. Paar, C., Fleischmann, P., Roelse, P.: Efficient Multiplier Architectures for Galois Fields GF(24 n). IEEE Transactions on Computers 47(2), 162–170 (1998)

    Article  MathSciNet  Google Scholar 

  15. Rodriguez-Henriquez, F., Koc, C.K.: On fully parallel Karatsuba multipliers for GF(2 m). In: Proceedings of the International Conference on Computer Science and Technology - CST 2003, May 2003, pp. 405–410. Acta Press, Cancun (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, N.S., Kim, C.H., Park, YH., Lim, J. (2005). A Non-redundant and Efficient Architecture for Karatsuba-Ofman Algorithm. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds) Information Security. ISC 2005. Lecture Notes in Computer Science, vol 3650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556992_21

Download citation

  • DOI: https://doi.org/10.1007/11556992_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29001-8

  • Online ISBN: 978-3-540-31930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics