
ar
X

iv
:q

-b
io

/0
50

50
23

v1
 [

q-
bi

o.
G

N
]

 1
3

M
ay

 2
00

5

On the Complexity of Several Haplotyping

Problems

Rudi Cilibrasi2⋆, Leo van Iersel1, Steven Kelk2 and John Tromp2

1 Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5612 AX Eindhoven,
Netherlands,

l.j.j.v.iersel@tue.nl,
http://w3.tue.nl/nl/

2 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ
Amsterdam, Netherlands,

Rudi.Cilibrasi@cwi.nl, S.M.Kelk@cwi.nl, John.Tromp@cwi.nl,
http://www.cwi.nl

Abstract In this paper we present a collection of results pertaining to
haplotyping. The first set of results concerns the combinatorial prob-
lem of reconstructing haplotypes from incomplete and/or imperfectly se-
quenced haplotype data. More specifically, we show that an interesting,
restricted case of Minimum Error Correction (MEC) is NP-hard, point
out problems in earlier claims about a related problem, and present a
polynomial-time algorithm for the ungapped case of Longest Haplotype

Reconstruction (LHR). Secondly, we present a polynomial time algorithm
for the problem of resolving genotype data using as few haplotypes as
possible (the Pure Parsimony Haplotyping Problem, PPH) where each
genotype has at most two ambiguous positions, thus solving an open
problem posed by Lancia et al in [14].

1 Introduction

If we abstractly consider the human genome as a string over the nucleotide al-
phabet {A,G,C, T }, it is widely known that the genomes of any two humans are
more than 99% similar. In other words, it is known that, at most sites along the
genome, humans all have the same nucleotide. At certain specific sites along the
genome, however, variability is observed across the human population. These
sites are known as Single Nucleotide Polymorphisms (SNPs) and are formally
defined as the sites on the human genome where, across the human popula-
tion, two or more nucleotides are observed and each such nucleotide occurs in
at least 5% of the population. It turns out that these sites, which occur (on
average) approximately once per thousand bases of the human genome, capture
the bulk of human genetic variability; the string of nucleotides found at the SNP
sites of a human - the haplotype of that individual - can thus be thought of as
a “fingerprint” for that individual. It is further apparent that, for most SNP

⋆ Research of all authors paid by the Dutch BSIK-Bricks project AFM2.

http://arxiv.org/abs/q-bio/0505023v1

sites, only two nucleotides are seen; sites where three or more nucleotides are
possible are comparatively rare. Thus, from a combinatorial perspective, a hap-
lotype can be abstractly expressed as a string over the alphabet {0, 1}. Indeed,
the biologically-motivated field of SNP and haplotype analysis - which is at the
forefront of “real-world” bioinformatics - has spawned an impressively rich and
varied assortment of combinatorial problems, which are well described in surveys
such as [3] and [7]. In this paper we focus on three such combinatorial problems;
the first two are related to the problem of haplotyping a single individual, and
the third is related to the problem of explaining the genetic variability of a pop-
ulation using as few haplotypes as possible.

The first two problems are both variants of the Single Individual Haplotyping

Problem (SIH), introduced in [13]. The SIH problem amounts to determining
the haplotype of an individual using (potentially) incomplete and/or imperfect
fragments of sequencing data. The situation is further complicated by the fact
that, being a diploid organism, a human has two versions of each chromosome;
one each from the individual’s mother and father. Hence, for a given interval
of the genome, a human actually has two haplotypes. Thus, the SIH problem
can be more accurately described as finding the two haplotypes of an individual
given fragments of sequencing data where the fragments potentially have read
errors and, crucially, where it is not known which of the two chromosomes each
fragment was read from. There are four well-known variants of the problem:
Minimum Fragment Removal (MFR), Minimum SNP Removal (MSR), Mini-

mum Error Correction (MEC), and Longest Haplotype Reconstruction (LHR).
In this paper we give results for MEC and LHR and refer the reader to [2] for
information about MFR and MSR.

1.1 Minimum Error Correction (MEC)

This is the problem where the input is an n×m matrix M of SNP fragments.
Each column of M represents an SNP site and thus each element of the matrix
denotes the (binary) choice of nucleotide seen at that SNP location on that frag-
ment. An element of the matrix can thus either be ‘0’, ‘1’ or a hole, represented
by ‘-’, which denotes lack of knowledge or uncertainty about the nucleotide at
that site. We use M [i, j] to refer to the value found at row i, column j of M ,
and use M [i] to refer to the ith row. We say that two rows r1, r2 of the ma-
trix are in conflict if there exists a column j such that M [r1, j] 6= M [r2, j] and
M [r1, j],M [r2, j] ∈ {0, 1}. We say that a matrix is feasible if the rows of the
matrix can be partitioned into two sets such that all rows within each set are
pairwise non-conflicting. The goal with MEC is thus to “correct” (or “flip”) as
few entries of the input matrix as possible (i.e. convert 0 to 1 or vice-versa) to
make the resulting matrix feasible. The motivation behind this is that all rows of
the input matrix were sequenced from one haplotype or the other, and that any
deviation from that haplotype occurred because of read-errors during sequencing.

In the context of haplotyping, MEC has been discussed - sometimes under a

different name - in papers such as [3], [16], [6] and (implicitly) [13]. One ques-
tion arising from this discussion is how the distribution of holes in the input
data affects computational complexity. To explain, let us first define a gap (in a
string over the alphabet {0, 1,−}) as a maximal contiguous block of holes that
is flanked on both sides by non-hole values. For example, the string ---0010---

has no gaps, -0--10-111 has two gaps, and -0-----1-- has one gap1. (Note
that the presence of holes does not automatically imply the presence of gaps!)
The problem variant Ungapped-MEC is where every row of the input matrix is
ungapped i.e. all holes appear at the start or end.

In this paper we offer what we believe is the first concrete proof that Ungapped-
MEC (and hence the more general Gapped-MEC) is NP-hard. We do so by
reduction from the optimisation version of MAX-CUT. As far as we are aware,
other claims of this result are based explicitly or implicitly on results found in
[10]; as we discuss in Section 2, we fear that the results in [10] cannot be used
for this purpose. Directly related to this, we define the problem Binary-MEC,
where the input matrix contains no holes; as far as we know the complexity of
this problem is still - intriguingly - open.

1.2 Longest Haplotype Reconstruction (LHR)

In this variant of the SIH problem, the input is again an SNP matrix M with
elements drawn from {0, 1,−}. Recall that the rows of a feasible matrix M can
be partitioned into two sets such that all rows within each set are pairwise non-
conflicting. Having obtained such a partition, we can reconstruct a haplotype
from each set by merging all the rows in that set together. (We define this
formally later in Section 3.) With LHR the goal is to remove rows such that
the resulting matrix is feasible and such that the sum of the lengths of the two
resulting haplotypes is maximised. In this paper we show that Ungapped-LHR

(where ungapped is defined as before) is polynomial-time solvable and we give
a dynamic programming algorithm for this which runs in time O(n2m + n3)
for an n ×m input matrix. This improves upon the result of [13]; the result of
[13] also showed a polynomial-time algorithm for Ungapped-LHR but under the
restricting assumption of non-nested input rows.

1.3 Pure Parsimony Haplotyping Problem (PPH)

As mentioned earlier, there are actually two haplotypes for any given interval
of an individual’s genome. With current sequencing techniques it is still consid-
ered impractical to read the two haplotypes separately; instead, a single string
is returned - the genotype - which combines the data from the two haplotypes
but, in doing so, loses some information. Thus, whereas a haplotype is a string

1 The case where each row of the input matrix has at most 1 gap is considered bio-
logically relevant because double-barrelled shotgun sequencing produces two disjoint
intervals of sequencing data.

over the {0, 1} alphabet, a genotype is a string over the {0, 1, 2} alphabet. A
‘0’ (respectively, ‘1’) entry in the genotype means that both chromosomes have
a ‘0’ (respectively, ‘1’) at that position. In contrast, a ‘2’ entry means that the
two haplotypes differ at that location: one has a ‘0’ while the other has a ‘1’
but we don’t know which goes where. Thus, a ‘2’-site of a genotype is called an
ambiguous position. We say that two haplotypes resolve a given genotype if that
genotype is the result of combining the two haplotypes in the above manner. For
example, the pair of haplotypes 0110 and 0011 resolve the genotype 0212.

It follows that a genotype with a ≥ 1 ambiguous positions can be resolved
in 2a−1 ways. Now, suppose we have a population of individuals and we obtain
(without errors) the genotype of each individual. The Pure Parsimony Haplotyp-

ing Problem (PPH) is as follows:- given a set of genotypes, what is the smallest
number of haplotypes such that each genotype is resolved by some pair of the
haplotypes? In [14] it is shown that PPH is hard (i.e. NP-hard and APX-hard)
even in the restricted case where no genotype has more than 3 ambiguous posi-
tions. The case of 2 ambiguous positions per genotype is left as an open question
in [14]. In this paper we resolve this question by providing a polynomial-time
algorithm for this problem that has a running time of O(mn log(n) + n3/2) for
n genotypes each of length m.

2 Minimum Error Correction (MEC)

For a length-m string X ∈ {0, 1,−}m, and a length-m string Y ∈ {0, 1}m, we
define d(X,Y) as being equal to the number of mismatches between the strings
i.e. positions where X is 0 and Y is 1, or vice-versa. (Holes do not contribute
to the mismatch count.) An n×m SNP matrix M is feasible if there exist two
strings (haplotypes) H1, H2 ∈ {0, 1}m, such that for all rows r ∈ M , d(r,H1) = 0
or d(r,H2) = 0. A flip is where a 0 entry is converted to a 1, or vice-versa. Note
that, in our formulation of the problem, we do not allow flipping to or from
holes, and the haplotypes H1 and H2 may not contain holes.

Problem: Ungapped-MEC

Input: An ungapped SNP matrix M
Output: The smallest number of flips needed to make M feasible.

Note that Ungapped-MEC is an optimisation problem, not a decision problem,
hence the use of “NP-hard” in the following lemma rather than “NP-complete”.
A decision version may be obtained by adding a flip upperbound in the range
[0, nm].

Lemma 1. Ungapped-MEC is NP-hard.

Proof. We give a polynomial-time Turing reduction from the optimisation ver-
sion of MAX-CUT, which is the problem of computing the size of a maximum cut
in a graph. Let G = (V,E) be the input to MAX-CUT, where E is undirected.

(Without loss of generality we identify V with the natural numbers 1, 2, ..., |V |.)
We construct an instance M of Ungapped-MEC as follows. M has 2k+ |E| rows
and 2|V | columns where k = 2|E||V |2. We use M0 to refer to the first k rows of
M , M1 to refer to the second k rows of M , and MG to refer to the remaining |E|
rows. The first k/|V | rows of M0 all have the following pattern: a 0 in the first
column, a 0 in the second column, and the rest of the row is holes. The second
k/|V | rows of M0 all have a 0 in the third column, a 0 in the fourth column, and
the rest holes; we continue this pattern i.e. each row in the jth block of k/|V |
rows in M0 (1 ≤ j ≤ |V |) has a 0 in column 2j−1, a 0 in column 2j, and the rest
holes. M1 is defined identically except that 1s are used instead of 0s. Each row of
MG encodes an edge from E:- for an edge (i, j) (where i is the numerically lower
endpoint) we specify that columns 2i−1 and 2i contain 0s, columns 2j−1 and 2j
contain 1s, and for all c 6= i, j, column 2c−1 contains 0 and column 2c contains 1.

Suppose t is the largest cut possible in G. We claim that:

Ungapped-MEC(M) = |E|(|V | − 2) + 2(|E| − t) (1)

From this t (i.e. MAX-CUT(G)) can easily be computed. First, note that the
solution to Ungapped-MEC(M) is trivially upperbounded by |V ||E|. This fol-
lows because we could simply flip every 1 entry in MG to 0; the resulting overall
matrix would be feasible because we could just take H0 as the all-0 string and
H1 as the all-1 string. Now, we say a haplotype H has the double-entry property
if, for all odd-indexed positions (i.e. columns) j in H , the entry at position j of
H is the same as the entry at position j + 1. We argue that a minimal num-
ber of feasibility-inducing flips will always lead to two haplotypes H1, H2 such
that both haplotypes have the double-entry property and, further, H1 is the
bitwise complement of H2. (We describe such a pair of haplotypes as partition-
encoding.) This is because, if H1, H2 are not partition-encoding, then at least
k/|V | > |V ||E| (in contrast with zero) entries in M0 and/or M1 will have to be
flipped, meaning this strategy is doomed to begin with.

Now, for a given partition-encoding pair of haplotypes, it follows that - for each
row in MG - we will have to flip either |V | − 2 or |V | entries to reach its near-
est haplotype. This is because, irrespective of which haplotype we move a row
to, the |V | − 2 pairs of columns not encoding end-points (for a given row) will
always cost 1 flip each to fix. Then either 2 or 0 of the 4 “endpoint-encoding”
entries will also need to be flipped; 4 flips will never be necessary because then
the row could move to the other haplotype, requiring no flips. Ungapped-MEC
thus maximises the number of rows which require |V |−2 rather than |V | flips. If
we think of H1 and H2 as encoding a partition of the vertices of V (i.e. a vertex
i is on one side of the partition if H1 has 1s in columns 2i − 1 and 2i, and on
the other side if H2 has 1s in those columns), it follows that each row requiring
|V |− 2 flips corresponds to a cut-edge in the vertex partition defined by H1 and
H2. Equation 1 follows.

�

Comment - a rediscovered open problem?

Consider the closely-related “witness” version of the (general) MEC problem:

Problem: Witness-MEC

Input: An SNP matrix M .
Output: For an input matrix M of size n×m, two haplotypes H1, H2 ∈ {0, 1}m

minimising:

D(H1, H2) =
∑

rows r∈M

min(d(r,H1), d(r,H2)) (2)

Owing to space restraints we do not prove this here but Witness-MEC is polynomial-
time interreducible with the non-witness, “counting” variant (that we have just
shown is NP-hard.)2 We mention this because, when expressed as a witness
problem, it can be seen that MEC is in fact a specific type of clustering prob-
lem. Namely, we are trying to find two representative “median” (or “consensus”)
strings such that the sum, over all input strings, of the distance between each
input string and its nearest median, is minimised. Clustering problems come
in many different flavours and the same problem often reappears, under differ-
ent guises, in multiple different branches of computer science. (For example:-
information/communication theory, artificial intelligence, computational geom-
etry, string processing, and data mining.) Related to this, let us define a further
problem:

Problem: Binary-Witness-MEC

Input: An SNP matrix M that does not contain any holes
Output: As for Witness-MEC

What is the complexity of this problem?3 Various papers claim that this problem
is NP-hard. As far as we can tell all such claims ultimately lead back to the sem-
inal paper Segmentation Problems by Kleinberg, Papadimitriou, and Raghavan
(KCP) [10]. This paper appears to treat Binary-Witness-MEC under the guise
of the 2-cluster, hypercube variant of KCP’s Segmentation Problem. However,
there are two caveats. Firstly, no NP-hardness reduction is given for this case.
Secondly, and more fundamentally, the KCP variant of the problem does not
restrain the rows of the input matrix M like Binary-Witness-MEC does. Specif-
ically, KCP only restricts the “decision vectors” (i.e. the output haplotypes) to
the alphabet {0, 1}, while allowing arbitrary “cost vectors” (i.e. the rows of the
input matrix) from R, a level of freedom that our problem does not permit.4 This
extra degree of freedom - particularly the ability to simultaneously use positive,

2 This result will appear in a forthcoming technical report.
3 The witnessing and counting versions of this problem are also polynomial-time in-
terreducible.

4 Curiously, some variants of KCP’s paper do discuss a version where the input matrix
is restrained to being binary [11], but again without proof, and based on the same
foundations as [10].

negative and zero values in the input matrix - is what provides the ability to
encode NP-hard problems.

If these observations are correct then the complexity of Binary-Witness-MEC
and its non-witness counterpart remain open. From an approximation viewpoint
the problem has been quite well-studied; the problem has a Polynomial Time

Approximation Scheme (PTAS) because it is a special form of the Hamming

2-Median Clustering Problem, for which a PTAS is demonstrated in [9]. Other
approximation results appear in [10], [1], [12], [15] and a heuristic for a similar
(but not identical) problem appears in [16].

Finally, it may also be relevant that - as far as we know - the “geometric” version
of the problem (which uses Euclidean distance rather than Hamming distance) is
also open from a complexity viewpoint. (The version using Euclidean-distance-
squared is NP-hard [4].)

3 Longest Haplotype Reconstruction (LHR)

Suppose an SNP matrix M is feasible. Then we can partition the rows of M
into two sets, Ml and Mr, such that the rows within each set are pairwise non-
conflicting. (The partition might not be unique.) From Mi (i ∈ {l, r}) we can
then build a haplotype Hi by combining the rows of Mi as follows: The jth
column of Hi is set to 1 if at least one row from Mi has a 1 in column j, is
set to 0 if at least one row from Mi has a 0 in column j, and is set to a hole
if all rows in Mi have a hole in column j. Note that, in contrast to MEC, this
can lead to haplotypes that potentially contain holes. For example, suppose one
side of the partition contains rows 10--, -0-- and ---1; then the haplotype
we get from this is 10-1. We define the length of a haplotype as the number of
positions where it does not contain a hole; the haplotype 10-1 thus has length
3, for example. Now, the goal with LHR is to remove rows from M to make it
feasible but also such that the sum of the lengths of the two resulting haplotypes
is maximised. We define the function LHR(M) (which gives a natural number
as output) as being the largest value this sum-of-lengths value can take, ranging
over all feasibility-inducing row-removals and subsequent partitions.

We provide a polynomial-time algorithm for the following variant of LHR:

Problem: Ungapped-LHR
Input: An ungapped SNP matrix M
Output: The value LHR(M), as defined above.

The LHR problem for ungapped matrices was proved to be polynomial time
solvable by Lancia et. al in [13], but only with the genuine restriction that no
fragments are included in other fragments. Our algorithm improves this in the
sense that it works for all ungapped input matrices; our algorithm is similar in

style to the algorithm that solves MFR in the ungapped case by Bafna et. al. in
[2]. The complexity of LHR with gaps is still an open problem. Note that our
dynamic-programming algorithm computes Ungapped-LHR(M) but it can easily
be adapted to generate the rows that must be removed (and subsequently, the
partition that must be made) to achieve this maximum.

Lemma 2. Ungapped-LHR can be solved in time O(n2m+ n3)

Proof. Let M be the input to Ungapped-LHR, and assume the matrix has size
n×m. For row i define l(i) as the leftmost column that is not a hole and define
r (i) as the rightmost column that is not a hole. The rows of M are ordered such
that l(i) ≤ l(j) if i < j. Define the matrix Mi as the matrix consisting of the first
i rows of M and two extra rows at the top: row 0 and row −1, both consisting
of all holes. Define OK(i) as the set of rows j < i that are not in conflict with
row i.

For h, k ≤ i and h, k ≥ −1 and r(h) ≤ r(k) define D[h, k; i] as the maximum
sum of lengths of two haplotypes such that:-

– each haplotype is a combination of rows from Mi

– each row from Mi can be used to build at most one haplotype (i.e. it cannot
be used for both haplotypes)

– row k is one of the rows used to build a haplotype and among such rows
maximizes r(·)

– row h is one of the rows used to build the other haplotype (than k) and
among such rows maximizes r(·)

The solution of the problem LHR(M) is given by

max
h,k|r(h)≤r(k)

D[h, k;n] (1)

We distinguish three different cases in the calculation of the D[h, k; i]. The
first case is when h, k < i. Under these circumstances,

D[h, k; i] = D[h, k; i− 1] (2)

This is because:-

– If r(i) > r(k): i cannot be used for the same haplotype as k because k has
maximal r(·) among all rows that are used for a haplotype

– If r(i) ≤ r(k): i cannot increase the length of this haplotype (because also
l(i) ≥ l(k))

– the same arguments hold for h

The second case is when h = i. In this case:

D[i, k; i] = max
j∈OK(i), j 6=k

r(j)≤r(i)

D[j, k; i− 1] + r(i) −max{r(j), l(i)− 1} (3)

This results from the following. The definition of D[i, k; i] says that row i has
to be used for the other haplotype than k and amongst such rows maximizes
r(·). Therefore the maximum sum of lengths is achieved by adding row i to the
optimal solution with the restriction that row j is the most-right-ending row,
for some j that agrees with i, is not equal to k and ends before i. The term
r(i) − max{r(j), l(i) − 1} is the increase in length of the haplotype if row i is
added.

The last case is when k = i:

D[h, i; i] = max
j∈OK(i), j 6=h

r(j)≤r(i)

{

D[j, h; i− 1] + r(i)−max{r(j), l(i)− 1} if r(h) ≥ r(j)
D[h, j; i− 1] + r(i)−max{r(j), l(i)− 1} if r(h) < r(j)

(4)

The time for calculating all the OK(i) is O(n2m). When all the OK(i) are
known, it takes O(n3) time to calculate all the D[h, k; i]. This is because we
need to calculate O(n3) values D[h, k; i] (h, k < i) that take O(1) time each and
O(n2) values D[i, k; i] and also O(n2) values D[h, i; i] that take O(n) time each.
This leads to an overall time complexity of O(n2m+ n3).

�

4 The Pure Parsimony Haplotyping Problem (PPH)

We refer the reader to Section 1.3 for definitions.

Problem: 2-ambiguous Pure Parsimony Haplotyping Problem

Input: A set G of genotypes such that no genotype has more than 2 ambiguous
positions
Output: PPH(G), which is the smallest number of haplotypes that can be
used to resolve G.

Lemma 3. The 2-ambiguous Pure Parsimony Haplotyping Problem can be solved

in polynomial-time.

Proof. We let n = |G| denote the number of genotypes in G and let m denote
the length of each genotype in G. We will compute the solution, PPH(G), by
reduction to the polynomial-time solvable problem MaxBIS, which is the prob-
lem of computing the cardinality of the maximum independent set in a bipartite
graph.

First, some notation. A genotype is i-ambiguous if it contains i ambiguous
positions. Each genotype in G is thus either 0-ambiguous, 1-ambiguous, or 2-
ambiguous. For a 0-ambiguous genotype g, we define hg as the string g. For
a 1-ambiguous genotype g we let hg:0 (respectively, hg:1) be the haplotype ob-
tained by replacing the ambiguous position in g with 0 (respectively, 1). For
a 2-ambiguous genotype g we let hg:i,j - where i, j ∈ {0, 1} - be the haplotype
obtained by replacing the first (i.e. leftmost) ambiguous position in g with i, and
the second ambiguous position with j. A haplotype is said to have even (odd)
parity iff it contains an even (odd) number of 1s.

Now, observe that there are two ways to resolve a 2-ambiguous genotype g:
(1) with haplotypes hg:0,0 and hg:1,1 and (2) with hg:0,1 and hg:1,0. Note that -
depending on h - one of the ways uses two even parity haplotypes, and the other
uses two odd parity haplotypes.

We build a set H of haplotypes by stepping through the list of genotypes and,
for each genotype, adding the 1, 2 or 4 corresponding haplotypes to the set H .
(Note that, because H is a set, we discard duplicate haplotypes.) That is, for
a 0-ambiguous genotype g add hg, for a 1-ambiguous genotype g add hg:0 and
hg:1, and for a 2-ambiguous genotype g add hg:0,0, hg:0,1, hg:1,0 and hg:1,1.

We are now ready to build a bipartite graph B = (V,E) as follows, where V has
bipartition V + ∪V −. For each h ∈ H we introduce a vertex, which we also refer
to as h; all h with even parity are put into V + and all h with odd parity are
put into V −. For each 0-ambiguous genotype g ∈ G we introduce a set I0(g) of
four vertices and we connect each vertex in I0(g) to hg. For each 1-ambiguous
genotype g ∈ G we introduce two sets of vertices I1(g, 0) and I1(g, 1), both
containing two vertices. Each vertex in I1(g, 0) is connected to hg:0 and each
vertex in I1(g, 1) is connected to hg:1. Finally, for each 2-ambiguous g ∈ G we
introduce (to V + and V − respectively) two sets of vertices I2(g,+) and I2(g,−),
each containing 4 vertices. We connect every vertex in I2(g,+) to every vertex
in I2(g,−), connect every vertex in I2(g,+) to the two odd parity haplotypes
resolving g, and connect every vertex in I2(g,−) to the two even parity haplo-
types resolving g. This completes the construction of B.

A maximum-size independent set (MIS) of B is a largest set of mutually non-
adjacent vertices of B. Observe that, in a MIS of B, all the vertices of I0(g)
must be in the MIS, for all 0-ambiguous g. To see this, suppose there exists a
0-ambiguous g such that at least one of the vertices in I0(g) is not in the MIS.
This is not possible. Firstly, note that if at least one vertex of I0(g) is in the
MIS, we should put all of I0(g) in the MIS. Secondly, suppose all the vertices
in I0(g) are out of the MIS, but hg is in the MIS. Then we could simply remove
hg from the MIS and add in all the vertices of I0(g), leading to a larger MIS:-
contradiction! By a similar argument we see that, for all 1-ambiguous g ∈ G, all

of I1(g, 0) and I1(g, 1) must be in the MIS. Now, consider I2(g,+) and I2(g,−),
for all 2-ambiguous g ∈ G. We argue that either I2(g,+) is wholly in the MIS,
or I2(g,−) is wholly in the MIS. Suppose, by way of argument, that there exists
a g such that both I2(g,+) and I2(g,−) are completely out of the MIS. If we are
(wlog) free to add all the vertices in I2(g,+) to the MIS we have an immediate
contradiction. So I2(g,+) is prevented from being in the MIS by the fact that
one or two of the haplotypes to which it is connected are already in the MIS. But
we could then build a bigger MIS by removing those (at most) two haplotypes
from the MIS and adding the four vertices I2(g,+); contradiction!

We can think of the presence of an I set in the MIS as denoting that the geno-
type it represents is resolved using the haplotypes to which it is attached. Hence,
every haplotype that is used for at least one resolution will not be in the MIS,
and unused haplotypes will be in the MIS. Hence, a MIS will try and minimise
the number of haplotypes used to resolve the given genotypes. Thus:-

MaxBIS(B) = 4n+ (|H | − PPH(G)) (1)

We can thus use a polynomial-time algorithm for MaxBIS to compute PPH(G).

�

Running time

The above algorithm can be implemented in time O(mn log(n) + n3/2).

First we build the graph B. We can without too much trouble build a graph
representation of B - that combines adjacency-matrix and adjacency-list fea-
tures - in O(mn log(n)) time. For each g ∈ G, add its corresponding I set(s)
and add the (at most) 4 haplotypes corresponding to g, without eliminating
duplicates, and at all times efficiently maintaining adjacency information. Then
sort the list of haplotypes and eliminate duplicate haplotypes (by merging their
adjacency information into one single haplotype.) It is not too difficult to do this
in such a way that, in the final data structure representing the graph, adjacency
queries can be answered, and adjacency-lists returned, in O(1) time. This whole
graph construction process takes O(mn log(n)) time.

A maximum independent set in a bipartite graph can be constructed from a
maximum matching. A maximum matching in B can be found in time O(n3/2)
because, in our case, |V | = O(n) and |E| = O(n) [8]. Once the maximum match-
ing is found, it needs O(|E|+ |V |) time to find a maximum independent set [5].
Thus finding a maximum independent set takes O(n3/2) time overall.

References

1. Noga Alon, Benny Sudakov, On Two Segmentation Problems, Journal of Algo-

rithms 33, 173-184 (1999)

2. Vineet Bafna, Sorin Istrail, Giuseppe Lancia, Romeo Rizzi, Polynomial and APX-
hard cases of the individual haplotyping problem, Theoretical Computer Science,
(2004)

3. Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Jing Li, The Haplotyp-
ing Problem: An Overview of Computational Models and Solutions, Journal of

Computer Science and Technology 18(6), 675-688 (November 2003)
4. P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering in large graphs

via Singular Value Decomposition, Journal of Machine Learning 56, 9-33 (2004)
5. F. Gavril, Testing for equality between maximum matching and minimum node

covering, Information processing letters 6, 199-202 (1977)
6. Harvey J. Greenberg, William E. Hart, Giuseppe Lancia, Opportunities for Com-

binatorial Optimisation in Computational Biology, INFORMS Journal on Com-

puting, Vol. 16, No. 3, 211-231 (Summer 2004)
7. Bjarni V. Halldorsson, Vineet Bafna, Nathan Edwards, Ross Lippert, Shibu

Yooseph, and Sorin Istrail, A Survey of Computational Methods for Determining
Haplotypes, Proceedings of the First RECOMB Satellite on Computational Meth-

ods for SNPs and Haplotype Inference, Springer Lecture Notes in Bioinformatics,
LNBI 2983, pp. 26-47 (2003)

8. J.E. Hopcroft, R.M. Karp, An n
5/2 algorithm for maximum matching in bipartite

graphs, SIAM Journal on Computing 2, 225-231 (1973)
9. Yishan Jiao, Jingyi Xu, Ming Li, On the k-Closest Substring and k-Consensus Pat-

tern Problems, Combinatorial Pattern Matching: 15th Annual Symposium (CPM
2004) 130-144

10. Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, Segmentation Prob-
lems, Proceedings of STOC 1998, 473-482 (1998)

11. Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, A Microeconomic
View of Data Mining, Data Mining and Knowledge Discovery 2, 311-324 (1998)

12. Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, Segmentation Prob-
lems, Journal of the ACM 51(2), 263-280 (March 2004) Note: this paper is some-
what different to the 1998 version.

13. Giuseppe Lancia, Vineet Bafna, Sorin Istrail, Ross Lippert, and Russel Schwartz,
SNPs Problems, Complexity and Algorithms, Proceedings of the 9th Annual Euro-

pean Symposium on Algorithms, 182-193 (2001)
14. Giuseppe Lancia, Maria Christina Pinotti, Romeo Rizzi, Haplotyping Populations

by Pure Parsimony: Complexity of Exact and Approximation Algorithms, IN-

FORMS Journal on Computing, Vol. 16, No.4, 348-359 (Fall 2004)
15. Rafail Ostrovsky and Yuval Rabani, Polynomial-Time Approximation Schemes

for Geometric Min-Sum Median Clustering, Journal of the ACM 49(2), 139-156
(March 2002)

16. Alessandro Panconesi and Mauro Sozio, Fast Hare: A Fast Heuristic for Single Indi-
vidual SNP Haplotype Reconstruction, Proceedings of 4th Workshop on Algorithms

in Bioinformatics (WABI 2004), LNCS Springer-Verlag, 266-277
17. Romeo Rizzi, Vineet Bafna, Sorin Istrail, Giuseppe Lancia: Practical Algorithms

and Fixed-Parameter Tractability for the Single Individual SNP Haplotyping Prob-
lem, 2nd Workshop on Algorithms in Bioinformatics (WABI 2002) 29-43

	On the Complexity of Several Haplotyping Problems

