Abstract
We study the problem of computing the minimal number of adjacent, non-intersecting block interchanges required to transform a permutation into the identity permutation. In particular, we use the graph of a permutation to compute that number for a particular class of permutations in linear time and space, and derive a new tight upper bound on the so-called transposition distance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Meidanis, J., Setubal, J.: Introduction to Computational Molecular Biology. Brooks-Cole, Pacific Grove (1997)
Pevzner, P.A.: Computational molecular biology. MIT Press, Cambridge (2000)
Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11, 224–240 (1998), (electronic)
Elias, I., Hartman, T.: A 1.375 −Approximation Algorithm for Sorting by Transpositions (2005), (submitted)
Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scotland (1998)
Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)
Guyer, S.A., Heath, L.S., Vergara, J.P.: Subsequence and run heuristics for sorting by transpositions. In: Fourth DIMACS Algorithm Implementation Challenge. Rutgers University (1995)
Vergara, J.P.C.: Sorting by Bounded Permutations. PhD thesis, Virginia Polytechnic Institute, Blacksburg, Virginia, USA (1997)
Walter, M.E.M.T., Curado, L.R.A.F., Oliveira, A.G.: Working on the problem of sorting by transpositions on genome rearrangements. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 372–383. Springer, Heidelberg (2003)
Dias, Z., Meidanis, J.: An Alternative Algebraic Formalism for Genome Rearrangements. Comparative Genomics, 213–223 (2000)
Dias, Z., Meidanis, J.: Genome Rearrangements Distance by Fusion, Fission, and Transposition is Easy. In: Proceedings of SPIRE 2001 - String Processing and Information Retrieval, Laguna de San Rafael, Chile, pp. 250–253 (2001)
Dias, Z., Meidanis, J., Walter, M.E.M.T.: A New Approach for Approximating The Transposition Distance. In: Proceedings of SPIRE 2000 - String Processing and Information Retrieval, La Coruna, Espagne (2000)
Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wästlund, J.: Sorting a bridge hand. Discrete Mathematics 241, 289–300 (2001); Selected papers in honor of Helge Tverberg
Hultman, A.: Toric Permutations. Master’s thesis, Dept. of Mathematics, KTH, Stockholm, Sweden (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Labarre, A. (2005). A New Tight Upper Bound on the Transposition Distance. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_18
Download citation
DOI: https://doi.org/10.1007/11557067_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29008-7
Online ISBN: 978-3-540-31812-5
eBook Packages: Computer ScienceComputer Science (R0)