Abstract
This paper investigates the problem of conservation of combinatorial structures in genome rearrangement scenarios. We characterize a class of signed permutations for which one can compute in polynomial time a reversal scenario that conserves all common intervals, and that is parsimonious among such scenarios. Figeac and Varré (WABI 2004) announced that the general problem is NP-hard. We show that there exists a class of permutations for which this computation can be done in linear time with a very simple algorithm, and, for a larger class of signed permutations, the computation can be achieved in subquadratic time. We apply these methods to permutations obtained from the X chromosomes of the human, mouse and rat.
A complete Version, Including Proofs, is Available in [3].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol. 8(5), 483–491 (2001)
Bérard, S., Bergeron, A., Chauve, C.: Conserved structures in evolution scenarios. In: RCG 2004. LNCS (LNBI), vol. 3388, pp. 1–15 (2004)
Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not always difficult. Technical Report LIRMM RR-05042, Montpellier, France (2005)
Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)
Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the properties of sequences of reversals that sort a signed permutation. In: JOBIM 2002, pp. 99–108 (2002)
Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)
Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)
Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)
Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of ancestral mammals: Lessons from human, mouse, and rat genomes. Genome Res. 14(4), 507–516 (2004)
Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: RECOMB 1999, pp. 84–94. ACM Press, New York (1999)
Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)
Didier, G.: Common intervals of two sequences. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 17–24. Springer, Heidelberg (2003)
Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)
Gibbs, R.A., et al.: Genome sequence of the brown norway rat yields insights into mammalian evolution. Nature 428(6982), 493–521 (2004)
Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)
Landau, G.M., Parida, L., Weimann, O.: Using PQ trees for comparative genomics. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 128–143. Springer, Heidelberg (2005)
de Montgolfier, F.: Décomposition modulaire des graphes. Théorie, extensions et algorithmes. Ph.D. thesis, Université Montpellier II, France (2003)
Sagot, M.-F., Tannier, E.: Perfect sorting by reversals. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 42–52. Springer, Heidelberg (2005)
Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992)
Schmidt, T., Stoye, J.: Quadratic time algorithms for finding common intervals in two and more sequences. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 347–358. Springer, Heidelberg (2004)
Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)
Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bérard, S., Bergeron, A., Chauve, C., Paul, C. (2005). Perfect Sorting by Reversals Is Not Always Difficult . In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_19
Download citation
DOI: https://doi.org/10.1007/11557067_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29008-7
Online ISBN: 978-3-540-31812-5
eBook Packages: Computer ScienceComputer Science (R0)