Skip to main content

Analytical Modeling and Comparison of AQM-Based Congestion Control Mechanisms

  • Conference paper
High Performance Computing and Communications (HPCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3726))

  • 881 Accesses

Abstract

Active Queue Management (AQM) is an effective mechanism to support end-to-end traffic congestion control in modern high-speed networks. The selection of different dropping functions and threshold values required for this scheme plays a critical role on its effectiveness. This paper proposes an analytical performance model for AQM using various dropping functions. The model uses a well-known Markov-Modulated Poisson Process (MMPP) to capture traffic burstiness and correlations. Extensive analytical results have indicated that exponential dropping function is a good choice for AQM to support efficient congestion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mcdysan, D.E.: QoS & Traffic Management in IP & ATM Networks. McGraw Hill, New York (1999)

    Google Scholar 

  2. Seungwan, R., Rump, C., Qiao, C.M.: Advances in Internet congestion Control. IEEE Communications 5(1) (2003)

    Google Scholar 

  3. Braden, B., et al.: Recommendations on Queue Management and Congestion Avoidance in the Internet. IETF RFC2309 (1998)

    Google Scholar 

  4. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM Transactions on Networking 1, 397–413 (1993)

    Article  Google Scholar 

  5. Floyd, S.: RED: Discussions of Setting Parameters (1997), http://www.icir.org/floyd/REDparameters.txt

  6. May, M., Diot, C., Lyles, B., Bolot, J.: Influence of Active Queue Management parameters on aggregate Traffic Performance. INRIA.RR3995 (2000)

    Google Scholar 

  7. Christiansen, M., Jeffay, K., Ott, D., Smith, F.D.: Tuning RED for Web Traffic. IEEE/ACM Trans. Network 9(3), 249–264 (2000)

    Article  Google Scholar 

  8. Floyd, S., Fall, K.: Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM Trans. Network 7(4), 472–485 (1999)

    Google Scholar 

  9. Brandauer, C., Iannaccone, G., Diot, C., Ziegler, T.: Comparison of Tail Drop and Active Queue Management Performance for Bulk-date and Web-like Internet Traffic. In: Proc. ISCC, pp. 122–129 (2001)

    Google Scholar 

  10. Bonald, T., May, M., Bolot, J.C.: Analytic Evaluation of RED Performance. Proc.IEEE INFOCOM, 1415–1424 (2000)

    Google Scholar 

  11. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Performance Evaluation 18(2), 149–171 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Min, G., Ould-Khaoua, M.: On The Performance of Circuit-switched Networks in The Presence of Correlated Traffic. Concurrency Computat. Pract.Exper. 16, 1313–1326 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Min, G., Awan, I. (2005). Analytical Modeling and Comparison of AQM-Based Congestion Control Mechanisms. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds) High Performance Computing and Communications. HPCC 2005. Lecture Notes in Computer Science, vol 3726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557654_10

Download citation

  • DOI: https://doi.org/10.1007/11557654_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29031-5

  • Online ISBN: 978-3-540-32079-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics