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Abstract. Structured data represented in the form of graphs arises in
several fields of the science and the growing amount of available data
makes distributed graph mining techniques particularly relevant. In this
paper, we present a distributed approach to the frequent subgraph min-
ing problem to discover interesting patterns in molecular compounds.
The problem is characterized by a highly irregular search tree, whereby
no reliable workload prediction is available. We describe the three main
aspects of the proposed distributed algorithm, namely a dynamic par-
titioning of the search space, a distribution process based on a peer-to-
peer communication framework, and a novel receiver-initiated, load bal-
ancing algorithm. The effectiveness of the distributed method has been
evaluated on the well-known National Cancer Institute’s HIV-screening
dataset, where the approach attains close-to linear speedup in a network
of workstations.

1 Introduction

A crucial step in the drug discovery process is the so-called High Throughput
Screening and the subsequent analysis of the generated data. During this process,
hundreds of thousands of potential drug candidates are automatically tested for
a desired activity, such as blocking a specific binding site or attachment to a
particular protein. This activity is believed to be connected to, for example, the
inhibition of a specific disease. Once all these candidates have been automatically
screened it is necessary to select few promising candidates for further, more
careful and cost-intensive analysis. A promising approach focuses on the analysis
of the molecular structure and the extraction of relevant molecular fragments
that may be correlated with activity. Relevant molecular fragment discovery
can be formulated as a frequent subgraph mining (FSM) problem [1] in analogy
to the association rule mining (ARM) problem [2, 3]. While in ARM the main
structure of the data is a list of items (itemset) and the basic operation is the
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subset test, FSM is based on graph and subgraph isomorphism.
In this paper we present a high performance application of the frequent subgraph
mining problem applied to the analysis of molecular compounds.

The rest of the paper is structured as follows. In the next section we intro-
duce the molecular fragment mining problem and discuss related approaches. In
Sect. 3 we discuss alternative definitions of discriminative molecular fragments
and briefly describe the sequential algorithm on which the distributed approach
is based. In Sect. 4 and 5 we present, respectively, a high performance distrib-
uted computing approach for subgraph mining and the adopted dynamic load
balancing policy. Section 6 describes the experiments we conducted to verify the
performance of the distributed approach. Finally, we provide conclusive remarks.

2 Problem Definition and Related Works

The problem of selecting discriminative molecular fragments in a set of molecules
can be formulated in terms of frequent subgraph mining in a set of graphs.
Molecules are represented by attributed graphs, in which each vertex represents
an atom and each edge a bond between atoms. Each vertex carries attributes
that indicate the atom type (i.e., the chemical element), a possible charge, and
whether it is part of a ring. Each edge carries an attribute that indicates the
bond type (single, double, triple, or aromatic). Frequent molecular fragments are
subgraphs that have a certain minimum support in a given set of graphs, i.e., are
part of at least a certain percentage of the molecules. Discriminative molecular
fragments are contrast substructures, which are frequent in a predefined set of
molecules and infrequent in the complement of this subset. In this case two
parameters are required: a minimum support (minSupp) for the focus subset
and a maximum support (maxSupp) for the complement.

These topological fragments carry important information and may be rep-
resentative of those components in the compounds that are responsible for a
positive behavior. Such discriminate fragments can be used to predict activity
in other compounds [4] and to guide the synthesis of new ones.

A number of approaches to find frequent molecular fragments have recently
been published [5–8] but they are all limited by the complexity of graph and
subgraph isomorphism tests and by the combinatorial nature of the problem.
Some of these algorithms can therefore operate on very large molecular databases
but only find small fragments [5, 6], whereas others can find larger fragments but
are limited by the maximum number of molecules they can analyse [7, 8].

Finding frequent fragments in a set of molecules can be seen as analysing
the space of all possible fragments that can be found in the entire molecular
database. Obviously, this set of all existing fragments is enormous even for rela-
tively small datasets: a single molecule of average size can already contain in the
order of hundreds of thousands of different fragments. Existing methods usually
organize the space of all possible fragments in a lattice, which models subgraph
relationships, that is, edges connect fragments that differ by exactly one atom
and/or bond. The search then reduces to traversing this lattice and reporting
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all fragments that fulfill the desired criteria. Based on existing data mining al-
gorithms for market basket analysis [2, 3] these methods conduct depth-first [7]
or breadth-first searches [6, 5]. An example of a search tree is depicted in Fig. 1,
which also shows the region of discriminative fragments.

However, none of the current sequential algorithms in a single processor can
be used for extremely large datasets (millions of molecules) and unlimited size
of the fragments that can be discovered. Quite obviously, parallel approaches to
this type of problem are a promising alternative. Although, in recent years, sev-
eral parallel and distributed algorithms have been proposed for the association
rule mining problem (D-ARM) [9], very few have addressed the FSM problem
[10, 11]. The approach in [10] achieved a relatively good performance in a small-
scale computational environment, but its scalability and efficiency are limited by
two main factors. First, the approach is based on a master-slave communication
model, which clearly cannot scale well to a large number of computing nodes.
Secondly, the communication overhead due to the large number of frequent frag-
ments limits the efficiency of the overall process. In this paper, we overcome
these two limitations by adopting a better definition of discriminative fragments
and by providing a more efficient and scalable distributed computing framework.

Fig. 1. Discriminative molecular fragment search tree

3 Efficient Frequent Subgraph Mining

We can assume that the molecular compounds in the dataset can be classified in
two groups, the focus set F (active molecules) and its complement C (non-active
molecules). For example, during the High Throughput analysis, compounds are
tested for a certain active behaviour and a score associated to their activity level
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is determined. In this case, a threshold (thres) on the activity value allows the
classification of the molecules in the two groups.
The aim of the data mining process is to provide a list of molecular fragments
that are frequent in the focus dataset and infrequent in the complement dataset.
However, the high number of frequent fragments that can be found in a large
dataset suggests the adoption of the closed frequent subgraphs (CFS). A closed
frequent subgraph is a frequent subgraph whose support is higher than the sup-
port of all its proper supergraphs. Given the CFS set, it is possible to directly
generate all frequent subgraphs without any further access to the dataset. More-
over, the support of all frequent subgraphs is implicitly defined by the support
of the closed ones. For this reason we adopt the CFS in more efficient definitions
of discriminative molecular fragments.
Given a dataset D and a frequency threshold minSupp, the sets of frequent and
closed frequent subgraphs are defined, respectively, as

FSD = {s | supp(s,D) ≥ minSupp} and
CFSD = {s | supp(s,D) ≥ minSupp and � x ∈ FSD, x ⊃ s and

supp(x,D) = supp(s,D)},

where s is a graph, supp(s,D) is the number of graphs in D, which are supersets
of s, i.e. the support of s in D.
In our context, we have to extend the concept of the closure to the duality of
active and non-active compounds. The following alternative definitions can be
adopted for the discriminative fragments (DF).

Definition 1 (Constrained FS) DFall is the set of frequent subgraphs in the
focus dataset constrained to infrequency in the complement dataset, according to

DFall = {s ∈ FSF | supp(s,C) ≤ maxSupp}.

Definition 2 (Constrained Focus-closed FS) DFF is the set of closed fre-
quent subgraphs in the focus dataset constrained to infrequency in the complement
dataset, according to

DFF = {s ∈ CFSF | supp(s,C) ≤ maxSupp}.

Definition 3 (Constrained Closed FS) DFFC is the set of frequent subgraphs
in the focus dataset constrained to infrequency in the complement dataset, which
are closed w.r.t. both sets of graphs, according to

DFFC = {s ∈ FSF | supp(s,C) ≤ maxSupp
and � x ∈ FSF , x ⊃ s, supp(x,F) = supp(s,F) and supp(x,C) = supp(s,C)}.

The first definition considers the subgraphs that are frequent in the focus dataset
and are constrained to a maximum support in the complement dataset. In the
other two definitions, the constrained frequent subgraphs are restricted by the
closure, respectively, only in the focus and in both datasets.
Closed frequent substructures can be considered a compact representation of the
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complete set of frequent substructures and lead to a significant improvement of
the efficiency of the mining process.
Table 1 provides an example of the number of discriminant fragments for the NCI
HIV dataset (cf. Sect. 6) when the different definitions are adopted. It should be
pointed out that the alternative definitions do not reduce the number of nodes in
the search tree, but only the number of stored and reported molecular fragments.

minSupp(%) DFall DFF DFF C

20 1091 35 827
15 9890 53 2158
10 17688 120 4874
8 59270 241 6044
6 OutOfMem 441 9522

minSupp(%) DFall DFF DFF C

20 0 0 0
15 5279 5 248
10 9403 24 977
8 50222 98 1728
6 127773 155 2629

(a) maxSupp = 1% (b) maxSupp = 0.1%

Table 1. Discriminative molecular fragments in 37171 NCI compounds (thres = 0.5).

3.1 Sequential Subgraph Mining

The distributed approach presented in this paper is based on the sequential algo-
rithm described in [7]. The algorithm organizes the space of all possible fragments
in an efficient depth-first search tree. Each possible subgraph of the molecular
structures is evaluated in terms of the number of embeddings that are present
in the molecular database. Each node of the search tree represents a candidate
frequent fragment. A search tree node evaluation comprises the generation of
all the embeddings of the fragment in the molecules. When a fragment meets
the minimum support criterion, it is extended by one bond to generate new
search tree nodes. When the fragment meets both criteria of minimum support
in active molecules and maximum support in the inactive molecules, it is then
reported as a discriminative frequent fragment. The algorithm prunes the DFS
tree according to three criteria. The support-based pruning exploits the anti-
monotone property of the fragment support. The size-based pruning exploits
the anti-monotone property of the fragment size. And, finally, a partial struc-
tural pruning is based on a local order of atoms and bonds. For further details
on the algorithm we refer to [7].

The analysis of the sequential algorithm pointed out the irregular nature
of the search tree. An irregular problem is characterized by a highly dynamic
or unpredictable domain. In this application the complexity and the exploration
time of the search tree, and even of a single search tree node cannot be estimated,
nor bounded.
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4 Distributed Subgraph Mining

The distributed approach we propose is based on a search space partitioning
strategy, distributed task queues with dynamic load balancing and a peer-to-
peer communication framework.
A static load balancing policy cannot be adopted as the work load is not known
in advance and cannot be estimated. We adopted a receiver-initiated DLB ap-
proach based on two components, a quasi-random polling for the donor selection
and a work splitting technique for the subtask generation. Both components
contribute to the overall DLB efficiency and to its suitability to heterogeneous
computing resources.
It is worth mentioning that all the algorithms, which have been proposed for
D-ARM in the past years, assume a static, homogeneous and dedicated compu-
tation environment and do not provide dynamic load balancing [9].
In the next section, we discuss some details of the distributed application related
to the search space partitioning.

4.1 Search Space Partitioning

Partitioning a Depth First Search (DFS) tree, i.e. parallel backtracking [12], has
been widely and successfully adopted in many applications. In general, it is quite
straightforward to partition the search tree to generate new independent jobs,
which can be assigned to idle processors. In this case, no synchronization is re-
quired among remote jobs.
A job assignment contains the description of a search node of the donor worker,
which becomes the initial fragment from which to start a new search at the re-
ceiving worker. The job assignment must contain all the information needed to
continue the search from exactly the same point in the search space. In our case,
this is essential in order to exploit the efficient search strategy provided by the
sequential algorithm and based on advanced pruning techniques. Thus, a job de-
scription includes the search node state to rebuild the same local order necessary
to prune the search tree as in the sequential algorithm (cf. structural pruning in
[7]). This requires an explicit representation of the state of the donated search
node. For this aim, we adopted the Simplified Molecular Input Line Entry Spec-
ification (SMILES) [13], a notation for organic structure description, which we
enhanced with numerical tags for atoms. These tags are used to represent the
subscripts of the atoms in a fragment according to the local order, i.e. the order
in which atoms have been added to the fragment.
The enhanced-SMILES representation of the fragment plus the last extension
performed (last extended atom subscript, last extended bond type and last added
atom type) are sufficient to re-establish the same local order at a remote process.
The receiving worker has to re-compute all the embeddings of the core fragment
into all molecular compounds in order to re-start the search. This extra com-
putation is necessary and is by far preferred over the expensive communication
cost of an explicit representation of the embeddings. The number of embeddings
of a fragment in the molecules can be very large, especially in the lower part of
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the search tree. Moreover, the donor worker can also perform a selection and a
projection of the dataset based on the donated search node.

Each worker maintains only a local and partial list of substructures found
during the execution of subtasks. Therefore, at the end of the search process we
perform a reduction operation. Workers are organized in a communication tree
and the number of communication steps required is in the order of O (log N),
where N is the number of processes. However, the determination of the closed
fragments includes expensive graph and subgraph isomorphism tests and may
represent a non-trivial computational cost. Therefore, the selection of the closed
fragments has to be distributed as well. This is performed during the reduction
operation in parallel by several concurrent processes.

A static partition of the search space can be adopted when job running times
can be estimated, which is not our case. We adopted a dynamic search tree
partitioning with a self-adaptive job-granularity based on a quasi-randomized
dynamic load balancing, which is discussed in the next section.

5 Dynamic Load Balancing (DLB)

Many DLB algorithms for irregular problems have been proposed in the litera-
ture and their properties have been studied. Most of them rely on uniform [14] or
bounded [15] task times or the availability of workload estimates [16]. However,
none of these assumptions holds in our case; we cannot guarantee that the com-
putation cost of a job is greater than the relative transmitting time, nor provide
minimum or maximum bounds for the running time of subtasks. It is quite chal-
lenging to efficiently parallelize irregular problems with such an unpredictable
workload.

In general, the DLB policy has to provide a mechanism to fairly distribute
the load among the processors using a small number of generated subtasks to
reduce the communication cost and the computational overhead. In particular,
the quality of both the selection of donors and the generation of new subtasks
is fundamental for an effective and efficient computational load distribution.
These two tasks are carried out, respectively, by the DLB algorithm and the
work splitting-mechanism discussed in the next two sections.

5.1 Quasi-Random Polling

When a worker completes its task, it has to select a donor among the other work-
ers to get a new subtask. In general, not all workers are equally suitable as donor.
Workers that are running a mining task for a longer time, have to be preferred.
This choice can be motivated by two reasons. The longest running jobs are likely
to be among the most complex ones. And this probability increases over time.
Secondly, a long job-execution time may also depend on the heterogeneity of the
processing nodes and their loads. With such a choice we provide support to the
nodes that are likely overloaded either by their current mining task assignment
or by other unrelated processes.
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The DLB approach we adopted is a receiver-initiated algorithm based on a
distributed quasi-random polling. Each worker keeps an ordered list of potential
donors and performs a random polling over them to get a new task. The proba-
bility of selecting a donor from the list is not uniform. In particular, we adopt a
simple linearly decreasing probability, where the donor list is ordered according
to the starting time of the latest job assignment. This way, long running jobs
have a high probability of being further partitioned, while most recently assigned
tasks do not.

In order to maintain statistics of job executions, we adopted a centralized
approach. At the starting and at the completion of a job execution, workers
notify the bootstrap node, which collects global job statistics. Workers keep the
local donor list updated by an explicit query to the bootstrap node.
Approaches based on global statistics are known to provide optimal load balanc-
ing performance, while randomized techniques provide high scalability.

In order to reduce latency, each worker also keeps a local pool of unprocessed
jobs. This way at the completion of a job, the request and reception of a new
one can be overlapped to the execution of a job from the local pool.

Furthermore, each worker keeps a list of donated and not completed jobs in
order to support mechanisms for fault tolerance and termination detection.

It should be noticed that the server for job statistics plays the same role
as the centralized directory of the first-generation P2P systems. The current
implementation of our P2P computing framework allows the dynamic joining of
peers and a basic fault-tolerance mechanism in case of abrupt peer disconnection.

5.2 Work Splitting

In problems with uniform or bounded subtask times the generation of either too
small or too big jobs is not an issue. In our case, wrong job granularity may
decrease the efficiency and limit the maximum speedup tremendously. While a
coarse job granularity may induce load imbalance and bounds on the maximum
speedup, a fine granularity may decrease the distributed system efficiency and
more processing nodes will be required to reach the maximum speedup. Thus, it
is important to provide an adaptive mechanism to find a good trade-off between
load balancing and job granularity.

In order to accomplish this aim we introduce a mechanism at the donor to
reduce the probability of generating trivial tasks and of inducing idling periods
at the donor processor itself. Search nodes from the stack can only be donated
(a) if they have sufficient support in the active compounds and (b) if they do
not have a very restrictive local order. A node with a restrictive local order is
likely to generate a small subtree even in the case of high support.
A worker follows three rules to donate a search node from its local stack. A
search tree node n can only be donated if

1. stackSize() ≥ minStackSize,
2. support(n) ≥ (1 + α) ∗ minSupp,
3. lxa(n) ≤ β ∗ atomCount(n),
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where α and β are tolerance factors, lxa() is the subscript of the last extended
atom in the fragment (see below), atomCount() provides the number of atoms
in a fragment and minStackSize specifies a minimum number of search nodes
in the stack to avoid starvation of the donor. The values of these parameters
are not critical and in our experiments we adopted minStackSize = 4, α = 0.1
and β = 0.5. These rules for selecting nodes of the local search tree guarantee
that the worker does not run out of work while donating non-trivial parts of its
search tree.

While rules 1 and 2 are quite straightforward, in order to explain rule 3,
we have to refer to the structural pruning technique adopted in the sequential
algorithm (cf. [7]). An atom subscript indicates the order in which the atom has
been added to the fragment. All the atoms of the fragment with a subscript less
than lxa cannot be further extended according to the sequential algorithm. As
a consequence, subtrees rooted at a node with a high lxa value (close to the
number of atoms in the fragment) are expected to have a low branching factor.

6 Experimental Results

The distributed algorithm has been tested for the analysis of a set of real mole-
cular compounds - a well-known, publicly available dataset from the National
Cancer Institute, the DTP AIDS Antiviral Screen dataset. This screen utilized a
soluble formazan assay to measure protection of human CEM cells from HIV-1
infection [17]. Compounds able to provide at least 50% protection to the CEM
cells were retested. Compounds that provided at least 50% protection on retest
were listed as moderately active (CM). Compounds that reproducibly provided
100% protection were listed as confirmed active (CA). Compounds not meeting
these criteria were listed as confirmed inactive (CI). We used a total of 37169
total compounds, of which 325 belong to class CA, 875 are of class CM and the
remaining 35969 are of class CI. In order to carry out tests on different sizes of
the focus dataset we combined these compounds as follows. We joined the CA
set with a different number of CM compounds to form four focus datasets with,
respectively, 325, 650, 975 and 1200 compounds.

Experimental tests have been carried out on a network of workstations3. The
software has been developed in Java; the communication among processes has
been implemented using TCP socket API and XML data format.

In our tests, we introduced a synchronization barrier to wait for a number
of processors to join the P2P system before starting the mining task only in
order to collect performance results. In general, this is not necessary, but in the
following results we did not want to consider the latency that is required to
simply start up the remote peers.

In general, the mining task becomes more difficult when the absolute value
of the minimum support decreases. In this case, a bigger and deeper part of
3 Nodes have different hardware and software configurations. The group of the eight

highest performing machines is equipped with a CPU Intel Xeon 2.40GHz, 3GB
RAM and run Linux 2.6.5-7.151 as well as Java SE 1.4.2 06.
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the fragment lattice has to be explored. We fixed minSupp = 6% and varied
the number of molecules in the focus dataset in order to show the influence of
the different definitions of Sect. 3 on the running time. For the different focus
datasets that have been defined above, this corresponds to an absolute minimum
support, respectively, of 20, 39, 59, and 72 molecules.
A comparison of running times of the serial and distributed (over 8 processors)
algorithms is shown in Fig. 2. The serial algorithm (serial DFFC) and one parallel
version (parallel DFFC) search for the closed frequent fragments according to
definition 3. The other two parallel versions search for all frequent fragments
(parallel DFall) and for the discriminative fragment of definition 2 (parallel
DFF ). It is evident that mining the dataset for all frequent fragments (DFall)
can become quite an expensive task. The running time of parallel DFall for
325 active molecules was above 3000 seconds. This is due to the combinatorial
explosion of the number of frequent fragments. It should be mentioned that, in
this case (DFall), the sequential algorithm cannot even complete the mining task
due to the single-system memory limitations.
Mining the dataset for the closed fragments (DFF and DFFC) is feasible for the
serial algorithm and is significantly sped up by the parallel execution.

We complete the analysis of the distributed approach by showing the speedup
curve (Fig. 3) of the parallel over the serial algorithm, when they search for the
discriminative fragments of definition 3 (DFFC). The speedup is linear in the first
part of the chart. Then, it is evident that more resources cannot further decrease
the running time because the amount of work is not significant enough and
additional computational resources cannot be effectively exploited. Nevertheless,
it is positive that the running time does not increase when unnecessary resources
are used as one might expect because of the additional communication and
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computation overheads. This provides evidence of the good scalability properties
of the system.

7 Conclusions

In this paper we presented a high performance computing approach to the fre-
quent subgraph mining problem for the discovery of discriminative molecular
fragments. The adopted approach is based on three components, which are a
dynamic partitioning of the search space, a novel dynamic load balancing pol-
icy and a peer-to-peer communication framework. Very low communication and
synchronization requirements, quasi-randomized receiver-initiated load balanc-
ing and high scalability of the communication framework make this distributed
data mining application suitable for large-scale, non-dedicated, heterogeneous
computational environments like Grids. Furthermore, the proposed approach
naturally tolerates node failures and communication latency and supports dy-
namic resource aggregation. Experimental tests on real molecular compounds
confirmed its effectiveness.
Future research effort will focus on very large-scale systems, where the central-
ized server for collecting job statistics could potentially become a bottleneck.
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