Skip to main content

A New Voting Algorithm for Tracking Human Grasping Gestures

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3708))

Abstract

This article deals with a monocular vision system for grasping gesture acquisition. This system could be used for medical diagnostic, robot or game control. We describe a new algorithm, the Chinese Transform, for the segmentation and localization of the fingers. This approach is inspired in the Hough Transform utilizing the position and the orientation of the gradient from the image edge’s pixels. Kalman filters are used for gesture tracking. We presents some results obtained from images sequence recording a grasping gesture. These results are in accordance with medical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pavlovic, V., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: A review. PAMI 19, 677–695 (1997)

    Google Scholar 

  2. Jeannerod, M.: Intersegmental coordination during reaching at natural visual objects. In: Long, J., Baddeley, A. (eds.) Attention and performance, pp. 153–168 (1981)

    Google Scholar 

  3. Jeannerod, M.: The timing of natural prehension movements. Journal of Motor Behavior 16, 235–254 (1984)

    Google Scholar 

  4. Castiello, U., Bennet, K., Bonfiglioli, C., Lim, S., Peppard, R.: The reach-to-grap movement in parkinson’s disease: response to a simultaneous perturbation of object position and object size. Computer Exp. Brain Res., 453–462 (1999)

    Google Scholar 

  5. Hermdörfer, J., Ulrich, S., Marquardt, C., Goldenberg, G., Mai, N.: Prehension with the ipsilesional hand after unilateral brain damage. Cortex 35, 139–161 (1999)

    Article  Google Scholar 

  6. Turk, M., Kolsch, M.: Perceptual Interfaces. In: Emerging Topics in Computer Vision. Prentice Hall PTR, Englewood Cliffs (2005)

    Google Scholar 

  7. Triesh, J., von der Malsburg, C.: Classification of hand postures agains complex backgrounds using elastic graph matching. Image and Vision Computing 20, 937–943 (2002)

    Article  Google Scholar 

  8. Oberkampf, D., DeMenthon, D., Davis, L.: Iterative pose estimation using coplanar feature points. Computer Vision and Image Understanding 63, 495–511 (1996)

    Article  Google Scholar 

  9. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: CVPR, Fort Collins, Colorado, vol. 2, pp. 22–46 (1999)

    Google Scholar 

  10. Reisfeld, D.: Generalized Symmetry Transforms: Attentional Mechanisms and Face Recognition. PhD thesis, Tel Aviv University (1994)

    Google Scholar 

  11. Milgram, M., Prevost, L., Belaroussi, R.: Multi-stage combination of geometric and colorimetric detectors for eyes localization. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1010–1017. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Kalman, R.: A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering, 35–45 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Negri, P., Clady, X., Milgram, M. (2005). A New Voting Algorithm for Tracking Human Grasping Gestures. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_17

Download citation

  • DOI: https://doi.org/10.1007/11558484_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29032-2

  • Online ISBN: 978-3-540-32046-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics