Skip to main content

Multistage Face Recognition Using Adaptive Feature Selection and Classification

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3708))

  • 1212 Accesses

Abstract

In this paper, we propose a cascaded face-identification framework for enhanced recognition performance. During each stage, the classification is dynamically optimized to discriminate a set of promising candidates selected from the previous stage, thereby incrementally increasing the overall discriminating performance. To ensure improved performance, the base classifier at each stage should satisfy two key properties: (1) adaptivity to specific populations, and (2) high training and identification efficiency such that dynamic training can be performed for each test case. To this end, we adopt a base classifier with (1) dynamic person-specific feature selection, and (2) voting of an ensemble of simple classifiers based on selected features. Our experiments show that the cascaded framework effectively improves the face recognition rate by up to 5% compared to a single stage algorithm, and it is 2-3% better than established well-known face recognition algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moghaddam, B., Jebara, T., et al.: Bayesian face recognition. Pattern Recognition 33(11), 1771–1782 (2000)

    Article  Google Scholar 

  2. Wiskott, L., Fellous, J.M., et al.: Face recognition by elastic bunch graph matching. In: Intell. Biometric tech. in fingerprint and face recog., pp. 355–396. CRC Press, Boca Raton (1999)

    Google Scholar 

  3. Li, Z., Tang, X.: Bayesian face recognition using Support Vector Machine and face clustering. In: Proc. IEEE Int. Conf. CVPR, vol. 2, pp. 374–380 (2004)

    Google Scholar 

  4. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularization studies on LDA for face recognition. In: Proc. ICIP, pp. 63–66 (2004)

    Google Scholar 

  5. Zuo, F., de With, P.H.N.: Fast facial feature extraction using a deformable shape model with Haar-wavelet based local texture attributes. In: Proc. ICIP, pp. 1425–1428 (2004)

    Google Scholar 

  6. Vasconcelos, N.: Feature selection by maximum marginal diversity: optimality and implications for visual recognition. In: Proc. CVPR, vol. 1, pp. 762–769 (2003)

    Google Scholar 

  7. Tuyls, P., Akkermans, A.H.M., et al.: Practical biometric authentication with template protection. To appear in Proc. AVBPA (2005)

    Google Scholar 

  8. Li, S.Z., Lu, J.: Face detection and recognition. Emerging Topics in Computer Vision. Prentice-Hall, Englewood Cliffs (2004)

    Google Scholar 

  9. Zhang, L., Li, S.Z., et al.: Boosting local feature based classifiers for face recognition. In: Proc. CVPR Workshop, p. 87 (2004)

    Google Scholar 

  10. Gokberk, B., Irfanoglu, M.O., et al.: Optimal Gabor kernel location selection for face recognition. In: Proc. ICIP, pp. 677–680 (2003)

    Google Scholar 

  11. Phillips, P.J., Moon, H., et al.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. PAMI 22, 1090–1104 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zuo, F., de With, P.H.N., van der Veen, M. (2005). Multistage Face Recognition Using Adaptive Feature Selection and Classification. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_3

Download citation

  • DOI: https://doi.org/10.1007/11558484_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29032-2

  • Online ISBN: 978-3-540-32046-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics