Skip to main content

Image De-Quantizing via Enforcing Sparseness in Overcomplete Representations

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3708))

  • 1187 Accesses

Abstract

We describe a method for removing quantization artifacts (de-quantizing) in the image domain, by enforcing a high degree of sparseness in its representation with an overcomplete oriented pyramid. For this purpose we devise a linear operator that returns the minimum L2-norm image preserving a set of significant coefficients, and estimate the original by minimizing the cardinality of that subset, always ensuring that the result is compatible with the quantized observation. We implement this solution by alternated projections onto convex sets, and test it through simulations with a set of standard images. Results are highly satisfactory in terms of performance, robustness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Desolneux, A., Ladjal, S., Moisan, L., Morel, J.M.: Dequantizing Image Orientation. IEEE Trans. Image Proc. 11(10), 1129–1140 (2002)

    Article  MathSciNet  Google Scholar 

  2. Chan, Y.H., Fung, Y.H.: A Regularized Constrained Iterative Restoration Algorithm for Restoring Color-Quantized Images. Elsevier Sig. Proc. 85, 1375–1387 (2005)

    MATH  Google Scholar 

  3. Paek, H., Kim, R., Lee, S.: On the POCS-based Postprocessing Technique to Reduce the Blocking Artifacts in Transform Coded Images. IEEE Trans. Circuit and Syst. for Video Tech. 8(3), 358–367 (1998)

    Article  Google Scholar 

  4. Mateos, J., Katsaggelos, A.K., Molina, R.: A Bayesian Approach to Estimate and Transmit Regularization Parameters for Reducing Blocking Artifacts. IEEE Trans. Image Proc. 9(7), 1200–1215 (2000)

    Article  MATH  Google Scholar 

  5. Li, X.: Improved Wavelet Decoding via Set Theoretic Estimation. IEEE Trans. Circuit and Syst. for Video Tech. Images 15(1), 108–112 (2005)

    Article  Google Scholar 

  6. Xiong, Z., Orchard, M.T., Zhang, Y.: A Deblocking Algorithm for JPEG Compressed Images Using Overcomplete Wavelet Representations. IEEE Trans. Circuit Syst. Video Tech. 7(2), 433–437 (1997)

    Article  Google Scholar 

  7. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized Overcomplete Expansions in ℝn: Analysis, Synthesis and Algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Youla, D.C.: Generalized Image Restoration by the Method of Alternating Orthogonal Projections. IEEE Trans. Circuits and Syst. CAS-25(9) (September 1978)

    Google Scholar 

  9. Mallat, S.G.: A Theory for multiresolution signal decomposition: The wavelet representation. PAMI 11, 674–693 (1989)

    MATH  Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Natural Image Statistics and Efficient Coding. Network Computation in Neural Systems 7, 333–339 (1996)

    Article  Google Scholar 

  11. Olshausen, B.A., Field, D.J.: Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  12. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable Multi-Scale Transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)

    Article  MathSciNet  Google Scholar 

  13. Coifman, R.R., Donoho, D.L.: Translation Invariant De-noising. Lecture Notes in Statistics 103, 125–150 (1995)

    Google Scholar 

  14. Simoncelli, E.P.: The Steerable Pyramid: A Flexible Architecture For Multi-Scale Derivative Computation. In: 2nd IEEE Intl Conf. Im. Proc., October 1995, vol. III, pp. 444–447 (1995)

    Google Scholar 

  15. Shapiro, J.: Embedded Image Coding Using Zerotrees of Wavelet Coefficients. IEEE Trans. Signal Proc. 41(22), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  16. Buccigrossi, R.W., Simoncelli, E.P.: Image Compression via Joint Statistical Characterization in the Wavelet Domain. IEEE Trans. Image Proc. 8(12), 1668–1701 (1999)

    Google Scholar 

  17. Pižurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Trans. Image Proc. 11(5), 545–557 (2002)

    Article  Google Scholar 

  18. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain. IEEE Trans. Image Proc. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  19. Rooms, F., Philips, W., Portilla, J.: Parametric PSF estimation via sparseness maximization in the wavelet domain. In: Proc. SPIE Conference Wavelet Applications in Industrial Processing II, Philadelphia, October 2004, SPIE, vol. 5607, pp. 26–33 (2004)

    Google Scholar 

  20. Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-Aware Images. IEEE Trans. on Image Proc. (2005) (accepted)

    Google Scholar 

  21. Wang, Z., Bovik, A.C., Simoncelli, E.P.: Image Quality Assessment: from Error Visibility to Structural Similarity. IEEE Trans. Im. Proc. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mancera, L., Portilla, J. (2005). Image De-Quantizing via Enforcing Sparseness in Overcomplete Representations. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_52

Download citation

  • DOI: https://doi.org/10.1007/11558484_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29032-2

  • Online ISBN: 978-3-540-32046-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics