Abstract
We describe a method for removing quantization artifacts (de-quantizing) in the image domain, by enforcing a high degree of sparseness in its representation with an overcomplete oriented pyramid. For this purpose we devise a linear operator that returns the minimum L2-norm image preserving a set of significant coefficients, and estimate the original by minimizing the cardinality of that subset, always ensuring that the result is compatible with the quantized observation. We implement this solution by alternated projections onto convex sets, and test it through simulations with a set of standard images. Results are highly satisfactory in terms of performance, robustness and efficiency.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Desolneux, A., Ladjal, S., Moisan, L., Morel, J.M.: Dequantizing Image Orientation. IEEE Trans. Image Proc. 11(10), 1129–1140 (2002)
Chan, Y.H., Fung, Y.H.: A Regularized Constrained Iterative Restoration Algorithm for Restoring Color-Quantized Images. Elsevier Sig. Proc. 85, 1375–1387 (2005)
Paek, H., Kim, R., Lee, S.: On the POCS-based Postprocessing Technique to Reduce the Blocking Artifacts in Transform Coded Images. IEEE Trans. Circuit and Syst. for Video Tech. 8(3), 358–367 (1998)
Mateos, J., Katsaggelos, A.K., Molina, R.: A Bayesian Approach to Estimate and Transmit Regularization Parameters for Reducing Blocking Artifacts. IEEE Trans. Image Proc. 9(7), 1200–1215 (2000)
Li, X.: Improved Wavelet Decoding via Set Theoretic Estimation. IEEE Trans. Circuit and Syst. for Video Tech. Images 15(1), 108–112 (2005)
Xiong, Z., Orchard, M.T., Zhang, Y.: A Deblocking Algorithm for JPEG Compressed Images Using Overcomplete Wavelet Representations. IEEE Trans. Circuit Syst. Video Tech. 7(2), 433–437 (1997)
Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized Overcomplete Expansions in ℝn: Analysis, Synthesis and Algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)
Youla, D.C.: Generalized Image Restoration by the Method of Alternating Orthogonal Projections. IEEE Trans. Circuits and Syst. CAS-25(9) (September 1978)
Mallat, S.G.: A Theory for multiresolution signal decomposition: The wavelet representation. PAMI 11, 674–693 (1989)
Olshausen, B.A., Field, D.J.: Natural Image Statistics and Efficient Coding. Network Computation in Neural Systems 7, 333–339 (1996)
Olshausen, B.A., Field, D.J.: Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Res. 37(23), 3311–3325 (1997)
Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable Multi-Scale Transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)
Coifman, R.R., Donoho, D.L.: Translation Invariant De-noising. Lecture Notes in Statistics 103, 125–150 (1995)
Simoncelli, E.P.: The Steerable Pyramid: A Flexible Architecture For Multi-Scale Derivative Computation. In: 2nd IEEE Intl Conf. Im. Proc., October 1995, vol. III, pp. 444–447 (1995)
Shapiro, J.: Embedded Image Coding Using Zerotrees of Wavelet Coefficients. IEEE Trans. Signal Proc. 41(22), 3445–3462 (1993)
Buccigrossi, R.W., Simoncelli, E.P.: Image Compression via Joint Statistical Characterization in the Wavelet Domain. IEEE Trans. Image Proc. 8(12), 1668–1701 (1999)
Pižurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Trans. Image Proc. 11(5), 545–557 (2002)
Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain. IEEE Trans. Image Proc. 12(11), 1338–1351 (2003)
Rooms, F., Philips, W., Portilla, J.: Parametric PSF estimation via sparseness maximization in the wavelet domain. In: Proc. SPIE Conference Wavelet Applications in Industrial Processing II, Philadelphia, October 2004, SPIE, vol. 5607, pp. 26–33 (2004)
Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-Aware Images. IEEE Trans. on Image Proc. (2005) (accepted)
Wang, Z., Bovik, A.C., Simoncelli, E.P.: Image Quality Assessment: from Error Visibility to Structural Similarity. IEEE Trans. Im. Proc. 13, 600–612 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mancera, L., Portilla, J. (2005). Image De-Quantizing via Enforcing Sparseness in Overcomplete Representations. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_52
Download citation
DOI: https://doi.org/10.1007/11558484_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29032-2
Online ISBN: 978-3-540-32046-3
eBook Packages: Computer ScienceComputer Science (R0)