Skip to main content

A Likelihood Ratio Test for Functional MRI Data Analysis to Account for Colored Noise

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3708))

Abstract

Functional magnetic resonance (fMRI) data are often corrupted with colored noise. To account for this type of noise, many pre-whitening and pre-coloring strategies have been proposed to process the fMRI time series prior to statistical inference. In this paper, a generalized likelihood ratio test for brain activation detection is proposed in which the temporal correlation structure of the noise is modelled as an autoregressive (AR) model. The order of the AR model is determined from experimental null data sets. Simulation tests reveal that, for a fixed false alarm rate, the proposed test is slightly (2-3%) better than current tests incorporating colored noise in terms of detection rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, M.S.: Real-time functional magnetic resonance imaging. Methods 25, 201–220 (2001)

    Article  Google Scholar 

  2. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995)

    Article  Google Scholar 

  3. Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C.: A general statistical analysis for fMRI data. NeuroImage 15, 1–15 (2002)

    Article  Google Scholar 

  4. Woolrich, M.W., Ripley, B.D., Brady, J.M., Smith, S.M.: Temporal autocorrelation in univariate linear modelling of fMRI data. NeuroImage 14, 1370–1386 (2001)

    Article  Google Scholar 

  5. Worsley, K.J., Friston, K.J.: Analysis of fMRI time-series revisited – again. NeuroImage 2, 173–181 (1995)

    Article  Google Scholar 

  6. Kay, S.M., Marple, S.L.: Spectrum analysis – a modern perspective. Proceedings of the IEEE 69, 1380–1419 (1981)

    Article  Google Scholar 

  7. Carew, J.D., Wahba, G., Xie, X., Nordheim, E.V., Meyerand, M.E.: Optimal spline smoothing of fMRI time series by generalized cross-validation. NeuroImage 18, 950–961 (2003)

    Article  Google Scholar 

  8. den Dekker, A.J., Sijbers, J.: Estimation of signal and noise from MR data. In: Advanced Image Processing in Magnetic Resonance Imaging of Signal Processing and Communications, vol. 26, Marcel Dekker, New York (2005) ISBN: 0824725425

    Google Scholar 

  9. van den Bos, A.: 8: Parameter Estimation. In: Sydenham, P.H. (ed.) Handbook of Measurement Science, vol. 1, pp. 331–377. Wiley, Chichester (1982)

    Google Scholar 

  10. Priestley, M.B.: Spectral analysis and time series. Academic Press, London (1981)

    MATH  Google Scholar 

  11. Kay, S.M.: Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc., Englewood Cliffs (1993)

    MATH  Google Scholar 

  12. Rowe, D.B., Logan, B.R.: A complex way to compute fMRI activation. Neuroimage 23, 1078–1092 (2004)

    Article  Google Scholar 

  13. Ardekani, B.A., Kershaw, J., Kashikura, K., Kanno, I.: Activation detection in functional MRI using subspace modeling and maximum likelihood estimation. IEEE Trans Med Imaging 18, 246–254 (1999)

    Article  Google Scholar 

  14. Broersen, P.M.T.: Finite sample criteria for autoregressive order selection. IEEE Trans. Sig. Proc. 48, 3550–3558 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sijbers, J., den Dekker, A.J., Bos, R. (2005). A Likelihood Ratio Test for Functional MRI Data Analysis to Account for Colored Noise. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_68

Download citation

  • DOI: https://doi.org/10.1007/11558484_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29032-2

  • Online ISBN: 978-3-540-32046-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics