Skip to main content

A Counterfactual-Based Learning Algorithm for \(\mathcal{ALC}\) Description Logic

  • Conference paper
AI*IA 2005: Advances in Artificial Intelligence (AI*IA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3673))

Included in the following conference series:

  • 717 Accesses

Abstract

We tackle the problem of learning ontologies expressed in a rich representation like the \(\mathcal{ALC}\) logic. This task can be cast as a supervised learning problem to be solved by means of operators for this representation which take into account the available metadata. The properties of such operators are discussed and their effectiveness is empirically tested in the experimentation reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baader, F., Turhan, A.-Y.: TBoxes do not yield a compact representation of least common subsumers. In: Working Notes of the 2001 International Description Logics Workshop, Proceedings CEUR Workshop, Stanford, USA, vol. 49 (2001)

    Google Scholar 

  3. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Cohen, W.W., Hirsh, H.: The learnability of description logic with equality constraints. Machine Learning 17(2-3), 169–199 (1994)

    Article  MATH  Google Scholar 

  5. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 121–133. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  6. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)

    Article  MATH  Google Scholar 

  9. Mitchell, T.M.: Machine Learning, Evaluating Hypotheses, ch. 5, pp. 128–153. McGraw-Hill, New York (1997)

    Google Scholar 

  10. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Google Scholar 

  11. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Staab, S., Studer, R.: Handbook on Ontologies. International Handbooks on Information Systems. Springer, Heidelberg (2004)

    Google Scholar 

  13. Teege, G.: A subtraction operation for description logics. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning, pp. 540–550. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  14. Vere, S.A.: Multilevel counterfactuals for generalizations of relational concepts and productions. Artificial Intelligence 14, 139–164 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G. (2005). A Counterfactual-Based Learning Algorithm for \(\mathcal{ALC}\) Description Logic. In: Bandini, S., Manzoni, S. (eds) AI*IA 2005: Advances in Artificial Intelligence. AI*IA 2005. Lecture Notes in Computer Science(), vol 3673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558590_41

Download citation

  • DOI: https://doi.org/10.1007/11558590_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29041-4

  • Online ISBN: 978-3-540-31733-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics