Abstract
The central argument of this paper the induction user profiles by supervised machine learning techniques for Intelligent Information Access. The access must be highly personalized by user profiles, in which representations of the users’ interests are maintained. Moreover, users want to retrieve information on the basis of conceptual content, but individual words provide unreliable evidence about the content of documents. A possible solution is the adoption of WordNet as a lexical resource to induce semantic user profiles.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge (1984)
Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)
Ceci, M., Malerba, D.: Hierarchical classification of HTML documents with WebClassII. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 57–72. Springer, Heidelberg (2003)
Yao, Y.Y.: Measuring retrieval effectiveness based on user preference of documents. Journal of the American Society for Information Science 46, 133–145 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Degemmis, M., Lops, P., Semeraro, G. (2005). Intelligent Information Access by Learning WordNet-Based User Profiles. In: Bandini, S., Manzoni, S. (eds) AI*IA 2005: Advances in Artificial Intelligence. AI*IA 2005. Lecture Notes in Computer Science(), vol 3673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558590_8
Download citation
DOI: https://doi.org/10.1007/11558590_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29041-4
Online ISBN: 978-3-540-31733-3
eBook Packages: Computer ScienceComputer Science (R0)