Abstract
Algebra of ordered fuzzy numbers (OFN) is defined to handle with fuzzy inputs in a quantitative way, exactly in the same way as with real numbers. Additional two structures: algebraic and normed (topological) are introduced to define a general form of defuzzyfication operators. A useful implementation of a Fuzzy Calculator allows counting with the general type membership relations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Czogała, E., Pedrycz, W.: Elements and Methods of Fuzzy Set Theory (in Polish), PWN, Warszawa, Poland (1985)
Czogała, E., Kowalczyk, R.: Towards an application of a fuzzy decision support system in cheesemaking process control. In: Chojcan, J., Łęski, J. (eds.) Zbiory rozmyte i ich zastosowania – Fuzzy Sets and their Applications, WPŚ, Gliwice, Poland, pp. 421–430 (2001)
Drewniak, J.: Fuzzy numbers (in Polish). In: Chojcan, J., Łęski, J. (eds.) Zbiory rozmyte i ich zastosowania – Fuzzy Sets and their Applications, WPŚ, Gliwice, Poland, pp. 103–129 (2001)
Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. System Science 9, 576–578 (1978)
Goetschel Jr., R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18, 31–43 (1986)
Kacprzyk, J.: Fuzzy Sets in System Analysis (in Polish), PWN, Warszawa, Poland (1986)
Klir, G.J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems 91, 165–175 (1997)
Kosiński, W.: On defuzzyfication of ordered fuzzy numbers. In: Rutkowski, L., Siekmann, J., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 326–331. Springer, Heidelberg (2004)
Kosiński, W., Koleśnik, R., Prokopowicz, P., Frischmuth, K.: On algebra of ordered fuzzy numbers. In: Atanassov, K.T., Hryniewicz, O., Kacprzyk, J. (eds.) Soft Computing – Foundations and Theoretical Aspects, pp. 291–302. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2004)
Kosiński, W., Piechór, K., Prokopowicz, P., Tyburek, K.: On algorithmic approach to operations on fuzzy numbers. In: Burczyński, T., Cholewa, W. (eds.) Methods of Artificial Intelligence in Mechanics and Mechanical Engineering, PACM, Gliwice, Poland, pp. 95–98 (2001)
Kosiński, W., Prokopowicz, P., Ślęzak, D.: Fuzzy numbers with algebraic operations: algorithmic approach. In: Kłopotek, M., Wierzchoń, S.T., Michalewicz, M. (eds.) Intelligent Information Systems 2002, Proc. IIS 2002, Sopot, June 3-6, pp. 311–320. Physica Verlag, Poland (2002)
Kosiński, W., Prokopowicz, P., Ślęzak, D.: Drawback of fuzzy arthmetics - new intutions and propositions. In: Burczyński, T., Cholewa, W., Moczulski, W. (eds.) Proc. Methods of Aritificial Intelligence, PACM, Gliwice, Poland, pp. 231–237 (2002)
Kosiński, W., Prokopowicz, P., Ślęzak, D.: On algebraic operations on fuzzy numbers. In: Kłopotek, M., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, Proc. of the International IIS: IIPWM 2003 Conference held in Zakopane, Poland, June 2-5, pp. 353–362. Physica Verlag, New York (2003)
Kosiński, W., Prokopowicz, P., Ślęzak, D.: Ordered fuzzy numbers. Bulletin of the Polish Academy of Sciences, Ser. Sci. Math. 51(3), 327–339 (2003)
Kosiński, W., Prokopowicz, P.: Algebra of fuzzy numbers (in Polish). Matematyka Stosowana. Matematyka dla Społeczeństwa 5(46), 37–63 (2004)
Kosiński, W., Słysz, P.: Fuzzy reals and their quotient space with algebraic operations. Bull. Pol. Acad. Sci., Sér. Techn. Scien. 41(30), 285–295 (1993)
Kosiński, W., Weigl, M.: General mapping approximation problems solving by neural networks and fuzzy inference systems. Systems Analysis Modelling Simulation 30(1), 11–28 (1998)
Łęski, J.: Ordered weighted generalized conditional possibilistic clustering. In: Chojcan, J., Łęski, J. (eds.) Zbiory rozmyte i ich zastosowania – Fuzzy Sets and their Applications, Prace dedykowane Profesorowi Ernestowi Czogale, WPŚ, Gliwice, Poland, pp. 469–479 (2001)
Martos, B.: Nonlinear Programming – Theory and methods, PWN, Warszawa, Poland (1983); (Polish translation of the English original published by Akadémiai Kiadó, Budapest, 1975)
Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)
Pedrycz, W.: Conditional fuzzy clustering in the design of radial basic function neural networks. IEEE Trans. Neural Networks 9(4), 601–612 (1998)
Sanchez, E.: Solutions of fuzzy equations with extended operations. Fuzzy Sets and Systems 12, 237–248 (1984)
Wagenknecht, M.: On the approximate treatment of fuzzy arithmetics by inclusion, linear regression and information content estimation. In: Chojcan, J., Łęski, J. (eds.) Zbiory rozmyte i ich zastosowania – Fuzzy sets and their applications, Wydawnictwo Politechniki Śląskiej, Gliwice, pp. 291–310 (2001)
Wagenknecht, M., Hampel, R., Schneider, V.: Computational aspects of fuzzy arithmetic based on Archimedean t-norms. Fuzzy Sets and Systems 123/1, 49–62 (2001)
Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. John Wiley & Sons, Inc., Chichester (1994)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Part I. Information Sciences 8, 199–249 (1975)
Zadeh, L.A.: The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems 11, 199–227 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kosiński, W., Prokopowicz, P., Ślęzak, D. (2005). Calculus with Fuzzy Numbers. In: Bolc, L., Michalewicz, Z., Nishida, T. (eds) Intelligent Media Technology for Communicative Intelligence. IMTCI 2004. Lecture Notes in Computer Science(), vol 3490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558637_3
Download citation
DOI: https://doi.org/10.1007/11558637_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29035-3
Online ISBN: 978-3-540-31738-8
eBook Packages: Computer ScienceComputer Science (R0)