Abstract
This paper presents the Interval Categorizer Tessellation-based Model (ICTM) for the simultaneous categorization of geographic regions considering several characteristics (e.g., relief, vegetation, land use etc.). Interval techniques are used for the modelling of uncertain data and the control of discretization errors. HPC-ICTM is an implementation of the model for clusters. We analyze the performance of the HPC-ICTM and present results concerning its application to the relief/land-use categorization of the region surrounding the lagoon Lagoa Pequena (RS, Brazil), which is extremely important from an ecological point of view.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguiar, M.S., Dimuro, G.P., Costa, A.C.R.: TOPO-ICTM: an interval tessellation-based model for reliable topographic segmentation. Numerical Algorithms 37(1), 3–11 (2004)
Coblentz, D., Kreinovich, V., Penn, B., Starks, S.: Towards reliable sub-division of geological areas: interval approach. In: Reznik, L., Kreinovich, V. (eds.) Soft Computing in Measurements and Information Acquisition, pp. 223–233. Springer, Heidelberg (2003)
Cooper, M.C.: The Tractability of Segmentation and Scene Analysis. International Journal on Computer Vision 30(1), 27–42 (1998)
Kearfort, R.B., Kreinovich, V. (eds.): Aplications of Interval Computations. Kluwer, Dordrecht (1996)
Forman, R.T.T.: Land Mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge (1995)
Fu, K.S., Mui, J.K.: A Survey on Image Segmentation. Pattern Recognition 13(1), 3–16 (1981)
Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable Parallel Programming with the Message-Passing Interface, 2nd edn. MIT Press, Cambridge (1999)
Lisani, J.L., Moisan, L., Monasse, P., Morel, J.M.: On The Theory of Planar Shape. Multiscale Modeling and Simulation 1(1), 1–24 (2003)
Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Umbaugh, S.E.: Computer Vision and Image Processing. Prentice Hall, New Jersey (1998)
Villaverde, K., Kreinovich, V.: A Linear-Time Algorithm that Locates Local Extrenma of a Function of One Variable from Interval Measurements Results. Interval Computations 4, 176–194 (1993)
Wolfram, S.: Cellular Automata and Complexity: selected papers. Addison-Wesley, Reading (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Aguiar, M.S. et al. (2006). HPC-ICTM: The Interval Categorizer Tessellation-Based Model for High Performance Computing. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_10
Download citation
DOI: https://doi.org/10.1007/11558958_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29067-4
Online ISBN: 978-3-540-33498-9
eBook Packages: Computer ScienceComputer Science (R0)