Skip to main content

Efficient Solvers for 3-D Homogenized Elasticity Model

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

Abstract

The optimization of the macroscopic behavior of microstructured materials using microscopic quantities as design variables is a well established discipline in materials science. The paper deals with recently produced microcellular biomorphic ceramics. The mechanical macromodel corresponding to these composite materials is obtained by homogenization. The homogenized elasticity tensor and its dependence on the design variables are computed numerically involving adaptive finite element approximations of elasticity problems in the 3-D periodicity cell. Efficient iterative solvers based on incomplete Cholesky (IC) decomposition and algebraic multigrid method (AMG) as preconditioners of the stiffness matrix are proposed in the application of PCG method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  2. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Heidelberg (2003)

    Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Elsevier Science Publishers, Amsterdam (1978)

    MATH  Google Scholar 

  4. Blaheta, R.: Displacement decomposition – incomplete factorization preconditioning techniques for linear elasticity problems. Numer. Linear Algebra Appl. 1(2), 107–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carstensen, C.: Averaging technique for FE-a posteriori error control in elasticity. Part II: λ-independent estimates. Comput. Methods Appl. Mech. Engrg. 190, 4663–4675 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Greil, P., Lifka, T., Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure, and II. Mechanical properties. J. Europ. Cer. Soc. 18, 1961–1973 and 1975–1983 (1998)

    Google Scholar 

  7. Hoppe, R.H.W., Petrova, S.I.: Applications of primal-dual interior methods in structural optimization. Comput. Methods Appl. Math. 3(1), 159–176 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Hoppe, R.H.W., Petrova, S.I.: Optimal shape design in biomimetics based on homogenization and adaptivity. Math. Comput. Simul. 65(3), 257–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Heidelberg (1994)

    Google Scholar 

  10. Rodriguez, R.: Some remarks on the Zienkiewicz-Zhu estimator. Numer. Meth. PDEs 10, 625–635 (1994)

    MATH  Google Scholar 

  11. Sarikaya, M., Aksay, I.A.: Biomimetics: Design and Processing of Materials, Woodbury (New York). AIP Series in Polymer and Complex Materials (1995)

    Google Scholar 

  12. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Intern. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoppe, R.H.W., Petrova, S.I. (2006). Efficient Solvers for 3-D Homogenized Elasticity Model. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_103

Download citation

  • DOI: https://doi.org/10.1007/11558958_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics