Abstract
The optimization of the macroscopic behavior of microstructured materials using microscopic quantities as design variables is a well established discipline in materials science. The paper deals with recently produced microcellular biomorphic ceramics. The mechanical macromodel corresponding to these composite materials is obtained by homogenization. The homogenized elasticity tensor and its dependence on the design variables are computed numerically involving adaptive finite element approximations of elasticity problems in the 3-D periodicity cell. Efficient iterative solvers based on incomplete Cholesky (IC) decomposition and algebraic multigrid method (AMG) as preconditioners of the stiffness matrix are proposed in the application of PCG method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others

References
Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)
Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Heidelberg (2003)
Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Elsevier Science Publishers, Amsterdam (1978)
Blaheta, R.: Displacement decomposition – incomplete factorization preconditioning techniques for linear elasticity problems. Numer. Linear Algebra Appl. 1(2), 107–128 (1994)
Carstensen, C.: Averaging technique for FE-a posteriori error control in elasticity. Part II: λ-independent estimates. Comput. Methods Appl. Mech. Engrg. 190, 4663–4675 (2001)
Greil, P., Lifka, T., Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure, and II. Mechanical properties. J. Europ. Cer. Soc. 18, 1961–1973 and 1975–1983 (1998)
Hoppe, R.H.W., Petrova, S.I.: Applications of primal-dual interior methods in structural optimization. Comput. Methods Appl. Math. 3(1), 159–176 (2003)
Hoppe, R.H.W., Petrova, S.I.: Optimal shape design in biomimetics based on homogenization and adaptivity. Math. Comput. Simul. 65(3), 257–272 (2004)
Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Heidelberg (1994)
Rodriguez, R.: Some remarks on the Zienkiewicz-Zhu estimator. Numer. Meth. PDEs 10, 625–635 (1994)
Sarikaya, M., Aksay, I.A.: Biomimetics: Design and Processing of Materials, Woodbury (New York). AIP Series in Polymer and Complex Materials (1995)
Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001)
Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Intern. J. Numer. Methods Eng. 24, 337–357 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoppe, R.H.W., Petrova, S.I. (2006). Efficient Solvers for 3-D Homogenized Elasticity Model. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_103
Download citation
DOI: https://doi.org/10.1007/11558958_103
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29067-4
Online ISBN: 978-3-540-33498-9
eBook Packages: Computer ScienceComputer Science (R0)