Abstract
Reproducibility of calculations is a longstanding issue within the statistical community. Due to the complexity of the algorithms, the size of the data sets, and the limitations of the medium printed paper it is usually not possible to report all the minutiae of the data processing and statistical computations. Like the critical assessment of a mathematical proof it should be possible to check the software behind a complex data analysis. To achieve reproducible calculations and to offer an extensible computational framework the tool of a compendium is discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Microarray special. Statistical Science, 18, 1–117 (2003)
Simon, R., Rademacher, M.D., Dobbin, K., McShane, L.M.: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Nat. Cancer Inst. 95, 14–18 (2003)
van ’t Veer, L., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A.M., Mao, M., Petersen, H.L., van de Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)
Huang, E., Cheng, S.H., Dressman, H., Pittman, J., Tsou, M.H., Horng, C.F., Bild, A., Iversen, E.S., Liao, M., Chen, C.M., West, M., Nevins, J.R., Huang, A.T.: Gene expression predictors of breast cancer outcomes. The Lancet 361, 1590–1596 (2003)
Chang, J., Wooten, E., Tsimelzon, A., Hilsenbeck, S., Gutierrez, C., Elledge, R., Mohsin, S., Osborne, K., Chamness, G., Allred, C., O’Connell, P.: Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet 362, 362–369 (2003)
Bullinger, L., Döhner, K., Bair, E., Fröhling, S., Schlenk, R.F., Tibshirani, R., Döhner, H., Pollack, J.R.: Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia. NEJM 350, 1605–1616 (2004)
Tibshirani, R.J., Efron, B.: Pre-validation and inference inmicroarrays. Statistical Applications in Genetics and Molecular Biology 1(1) (2002)
Breiman, L.: Statistical Modelling: The Two Cultures. Statistical Science 16, 199–231 (2001)
Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. 99, 6562–6566 (2002)
Brenton, J.D., Caldas, C.: Predictive cancer genomics - what do we need? The Lancet 362, 340–341 (2003)
Leisch, F., Rossini, A.J.: Reproducible statistical research. Chance 16, 41–46 (2003)
Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of DiscriminationMethods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association 97, 77–87 (2002)
Lee, J.W.: Korea University, Department of statistics, personal communication
Ihaka, R., Gentleman, R.: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299–314 (1996)
Gentleman, R., Carey, V.: Bioconductor. R News 2(1), 11–16 (2002)
Leisch, F.: Dynamic generation of statistical reports using literate data analysis. In: Compstat 2002 - Proceedings in Computational Statistics, pp. 575–580 (2002)
van de Vijver, M.J., He, Y.D., van ’t Veer, L.J., et al.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002)
Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class prediction by nearest shrunken centroids, with application to DNA microarrays. Statistical Science 18, 104–117 (2003)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999)
Breiman, L.: Random Forests. Machine Learning Journal 45, 5–32 (2001)
Eilers, P.H., Boer, J.M., Van Ommen, G.J., Van Houwelingen, H.C.: Classification of Microarray Data with Penalized Logistic Regression. In: Proceedings of SPIE volume 4266:progress in biomedical optics and imaging, vol. 2, pp. 187–198 (2001)
Carey, V.J.: Literate Statistical Programming: Concepts and Tools. Chance 14, 46–50 (2001)
Sawitzki, G.: Keeping Statistics Alive in Documents. Computational Statistics 17, 65–88 (2002)
Leisch, F.: Dynamic generation of statistical reports using literate data analysis. In: Compstat 2002 - Proceedings in Computational Statistics, pp. 575–580 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mansmann, U., Ruschhaupt, M., Huber, W. (2006). Reproducible Statistical Analysis in Microarray Profiling Studies. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_114
Download citation
DOI: https://doi.org/10.1007/11558958_114
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29067-4
Online ISBN: 978-3-540-33498-9
eBook Packages: Computer ScienceComputer Science (R0)