Skip to main content

A Parallel Method for Large Sparse Generalized Eigenvalue Problems by OmniRPC in a Grid Environment

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

Abstract

In this paper we present a parallel method for finding several eigenvalues and eigenvectors of a generalized eigenvalue problem A x = λB x, where A and B are large sparse matrices. A moment-based method by which to find all of the eigenvalues that lie inside a given domain is used. In this method, a small matrix pencil that has only the desired eigenvalues is derived by solving large sparse systems of linear equations constructed from A and B. Since these equations can be solved independently, we solve them on remote hosts in parallel. This approach is suitable for master-worker programming models. We have implemented and tested the proposed method in a grid environment using a grid RPC (remote procedure call) system called OmniRPC. The performance of the method on PC clusters that were used over a wide-area network was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldi, W.E.: The principle ofminimized iteration in the solution of the matrix eigenproblem. Quarterly of Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  2. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Golub, G.H., Milanfar, P., Varah, J.: A stable numerical method for inverting shape from moments. SIAM J. Sci. Comp. 21(4), 1222–1243 (1999)

    Article  MathSciNet  Google Scholar 

  4. Hyodo, S.: Meso-scale fusion: A method for molecular electronic state calculation in inhomogeneous materials. In: Proc. the 15th Toyota Conference, Mikkabi (2001) in Special issue of J. Comput. Appl. Math. 149, 101–118 (2002)

    Google Scholar 

  5. Inadomi, Y., Nakano, T., Kitaura, K., Nagashima, U.: Definition of molecular orbitals in fragment molecular orbital method. Chemical Physics Letters 364, 139–143 (2002)

    Article  Google Scholar 

  6. Kravanja, P., Sakurai, T., Van Barel, M.: On locating clusters of zeros of analytic functions. BIT 39, 646–682 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kravanja, P., Sakurai, T., Sugiura, H., Van Barel, M.: A perturbation result for generalized eigenvalue problems and its application to error estimation in a quadrature method for computing zeros of analytic functions. J. Comput. Appl. Math. 161, 339–347 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. OmniRPC, http://www.omni.hpcc.jp/OmniRPC

  9. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems II: matrix pairs. Linear Algevr. Appl. 197, 283–295 (1984)

    Article  MathSciNet  Google Scholar 

  10. Saad, Y.: Iterative Methods for Large Eigenvalue Problems. Manchester University Press, Manchester (1992)

    Google Scholar 

  11. Sakurai, T., Kravanja, P., Sugiura, H., Van Barel, M.: An error analysis of two related quadrature methods for computing zeros of analytic functions. J. Comput. Appl. Math. 152, 467–480 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sato, M., Boku, T., Takahashi, D.: OmniRPC: a Grid RPC System for parallel programming in cluster and grid environment. In: Proc. CCGrid 2003, pp. 206–213 (2003)

    Google Scholar 

  14. van der Vorst, H.A., Melissen, J.B.M.: A Petrov-Galerkin type method for solving Ax = b, where A is a symmetric complex matrix. IEEE Trans. on Magnetics 26(2), 706–708 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakurai, T., Hayakawa, K., Sato, M., Takahashi, D. (2006). A Parallel Method for Large Sparse Generalized Eigenvalue Problems by OmniRPC in a Grid Environment. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_138

Download citation

  • DOI: https://doi.org/10.1007/11558958_138

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics