Skip to main content

A Verification Method for Solutions of Linear Programming Problems

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

  • 1442 Accesses

Abstract

This paper is concerned with the verification of a solution of a linear programming problem obtained by an interior-point method. The presented method relies on a reformulation of the linear programming problem as an equivalent system of nonlinear equations and uses mean value interval extension of functions and a computational fixed point theorem. The designed algorithm proves or disproves the existence of a solution on a computer and, if it exists, encloses this solution in narrow bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G.E., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. Frisch, R.K.: The logarithmic potential method of convex programming, Memorandum, University Institute of Economics, Oslo (1955)

    Google Scholar 

  3. Fiacco, V., Mccormick, G.P.: Nonlinear Programming: Sequential Unconstraint Minimization Techniques. SIAM Classics in Applied Mathematics 4, Philadelphia (1990)

    Google Scholar 

  4. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I. Springer, Berlin (1993)

    MATH  Google Scholar 

  5. Idriss, I.I.: Verified Linear Programming in Control System Analysis and Design, Dresden University of Technology, Dissertation (2001)

    Google Scholar 

  6. Jansson, C.: Zur Linearen Optimierung mit unscharfen Daten. Dissertation, Universität Kaiserslautern (1985)

    Google Scholar 

  7. Karmarkar, N.K.: A New Polynomial-Time Algorithm for Linear Programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  9. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mehrotra, S.: On the Implementation of a Primal-Dual Interior Point Method. SIAM Journal on Optimization 2(4), 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Moore, R.E.: A Test for Existence of Solutions to Nonlinear Systems. SIAM Journal on Numerical Analysis 14, 611–615 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, London (1990)

    MATH  Google Scholar 

  13. Rump, S.M.: Verification Methods for Dense and Sparse Systems of Equations. In: Herzberger, J. (ed.) Topics in Validated Computations — Studies in Computational Mathematics, pp. 63–136. Elsevier, Amsterdam (1994)

    Google Scholar 

  14. Todd, M.J.: Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization. In: Cucker, F., DeVore, R., Olver, P., Suli, E. (eds.) Foundations of Computational Mathematics, pp. 157–192. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  15. Vanderbei, R.J.: LOQO User’s Manual, Version 4.05, Technical Report NO. ORFE-99-307, Department of Operation Research and Financial Engineering, Princeton University (2000)

    Google Scholar 

  16. Walter, W.V.: FORTRAN-XSC: A Portable Fortran 90 Module Library for Accurate and Reliable Scientific Computing. In: Albrecht, R., Alefeld, G., Stetter, H.J. (eds.) Validation Numerics — Theory and Application. Computing Supplementum, vol. 9, pp. 265–285 (1993)

    Google Scholar 

  17. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM Publication, Philadelphia (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Idriss, I.I. (2006). A Verification Method for Solutions of Linear Programming Problems. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_15

Download citation

  • DOI: https://doi.org/10.1007/11558958_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics