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Abstract. In this paper we explore the parallelization of the scientific library
from GNU both on shared-memory and distributed-memory architectures. A pair
of classical operations, arising in sparse linear algebra and discrete mathematics,
allow us to identify the major challenges involved in this task, and to analyze
the performance, benefits, and drawbacks of two different possible parallelization
approaches.

1 Introduction

The GNU Scientific Library (GSL) [4] is a collection of hundreds of routines for nu-
merical scientific computations written in ANSI C, which includes codes for complex
arithmetic, matrices and vectors, linear algebra, integration, statistics, and optimization,
among others. The reason GSL was never parallelized seems to be the lack of a glob-
ally accepted standard for developing parallel applications. We believe that with the
introduction of OpenMP and MPI the situation has changed substantially. OpenMP has
become a standard de facto for exploiting parallelism using threads, while MPI is nowa-
days accepted as the standard interface for developing parallel applications following
the message-passing programming model.

In this paper we investigate the parallelization of a specific part of GSL using
OpenMP and MPI and their respective performances on shared-memory multiproces-
sors (SMPs) and distributed-memory multiprocessors (or multicomputers). In Section 2
we give a general overview of our parallel integrated version of GSL. Two classical
numerical computations, arising in sparse linear algebra and discrete mathematics, are
employed to explore the challenges involved in this task. In Section 3 we elaborate our
first case study, describing a parallelization of the sparse matrix-vector product addressed
to SMPs. In Section 4 the analysis is repeated for a parallel routine that computes the Fast
Fourier Transform (FFT) targeted in this case for multicomputers. Finally, concluding
remarks follow in Section 5.
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2 Parallel GSL

Our general goal is to develop parallel versions of GSL using MPI and OpenMP which
are portable to several parallel architectures, including distributed and shared-memory
multiprocessors, hybrid systems, and clusters of heterogeneous nodes. Besides, we want
to reach two different classes of users: a programmer with no experience in parallel
programming, who will be denoted as user A, and a second programmer, or user B,
that regularly utilizes MPI or OpenMP. As additional objectives, the routines included
in our library should execute efficiently on the target parallel architecture and, equally
important, the library should appear to user A as a collection of traditional serial rou-
tines. We believe our approach to be different to some other existing parallel scientific
libraries (see, e.g., http://www.netlib.org) in that our library targets multiple classes of
architectures while maintaining the sequential interface of the routines.

Fig. 1. Software architecture of the parallel version of GSL

Our library has been designed as a multilevel software architecture; see Fig. 1. The
User Level (the top level) provides a sequential interface that hides the parallelism to
user A and supplies the services through C/C++ functions according to the prototypes
specified by the sequential GSL interface.

The Programming Model Level provides a different instantiation of the GSL li-
brary for each one of the computational models: sequential, distributed-memory, shared-
memory, and hybrid. The semantics of the functions in the Programming Model Level
are those of the parallel case so that user B can invoke them directly from her own parallel
programs. The Programming Model Level implements the services for the upper level
using standard libraries and parallelizing tools such as (the sequential) GSL, MPI, and
OpenMP.

In the distributed-memory (or message-passing) programming model we view the
parallel application as being executed by p peer processes, P0, P1,. . . ,Pp−1, where the
same parallel code is executed by all processes on different data.

In the Physical Architecture Level the design includes shared-memory platforms,
distributed-memory architectures, and hybrid and heterogeneous systems.

For further details of the functionality and interfaces, see [1].
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3 Case Study I: Sparse Matrix-Vector Product

3.1 Operation

Sparse matrices arise in a vast amount of areas. Surprisingly enough, GSL does not
include routines for sparse linear algebra, most likely due to the lack of an standardized
interface definition, which was only developed very recently [3].

Here we explore the parallelization of the sparse matrix-vector product, denoted as
USMV in the Level-2 sparse BLAS [3]. In this operation an m×n sparse matrix A, with
nz nonzero elements, is multiplied by a vector x with n elements. The result, scaled by
a value α, is used to update a vector y of order m as y ← y + α · A · x.

The implementation, parallelization, and performance of the USMV operation
strongly depends on the storage scheme employed for the sparse matrix. In the co-
ordinate format, two integer arrays of length nz hold the row and column indices of
the nonzero elements of the matrix, while a third array, of the same dimension, holds
the values. In the columnwise variant of this format, the values are listed by columns.
The rowwise Harwell-Boeing scheme also employs a pair of arrays of length nz for
the column indices and the values. A third array, of length m + 1, determines then the
starting/ending indices for each one of the rows of the matrix. Figure 2 illustrates the
use of these two storage schemes by means of a simple example.
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Fig. 2. Storage schemes for a 3 × 4 sparse matrix with nz = 4 nonzero elements

The USMV operation is usually implemented as a series of saxpy (scalar α times
x plus y) operations or dot products depending respectively on whether the matrix is
stored columnwise or rowwise. In particular, in the columnwise implementation of the
matrix-vector product, for each column of A, denoted as A(:, j), a saxpy operation is
performed to update vector y as y ← y + A(:, j) · (α ∗ x[j]). In the rowwise case,
the matrix-vector product is computed as a series of dot products, involving a row of
matrix A, denoted as A(i, :), and x. The result is used to update a single element of y as
y[i] ← y[i]+α · (A(i, :) ·x). Codes for the columnwise/rowwise implementation of the
sparse matrix-vector product are given in Fig. 3. Minor modifications are introduced in
those codes to facilitate the exposition of the parallel implementations using OpenMP.

3.2 Parallel Implementation Using OpenMP

Parallelizing a sequential code using OpenMP is, in most cases, straight-forward. One
only needs to evaluate possible data dependencies and then place the appropriate direc-
tives in loops/regions of the code that indicate the OpenMP environment how to extract
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indval=0;
for(j=0;j<n;j++){
nzj=nz_in_column(j);
temp=alpha*x[j];
for(i=0;i<nzj;i++){

k=rows[indval+i];
y[k]+=values[indval+i]

*temp;
}
indval+=nzj;

}

for(i=0;i<m;i++){
indval=rows[i];
temp=0.0;
for(j=rows[i];j<rows[i+1];
j++){
k=cols[indval];
temp+=values[indval]

*x[k];
indval++;

}
y[i]=y[i]+alpha*temp;

}

Fig. 3. Implementation of the USMV operation for the columnwise coordinate format (left) and the
rowwise Harwell-Boeing format (right). Routine nz in column returns the number of nonzero
elements in a column

parallelism from the corresponding parts using threads. As a general rule, in codes com-
posed of nested loops it is better to parallelize the outermost loop as that distributes a
larger part computational load among the threads.

Consider now the columnwise coordinate implementation of USMV (left of Fig. 3).
Parallelizing the outer loop in this code implies that two or more threads could be
concurrently updating the same element of vector y, which is a well-known case for a
race condition. A solution to this problem is to guarantee exclusive access to the elements
of y; however, synchronization mechanisms for mutual exclusion usually result in large
overheads and performance loss. Therefore, we decide to only parallelize the inner loop
in this case so that the outer loop is executed by a single master thread, while multiple
threads will cooperate during the computation of each saxpy operation performed in the
inner loop. In order to do so, we need to introduce the OpenMP directive:

#pragma omp parallel for private (i, k)
just above the inner loop. Given that each iteration of the inner loop requires the same
amount of computations, a static scheduling of the threads achieves a good distribution
of the computational load for this implementation. The parallelization of the inner loop,
though simple, is not completely satisfactory. In general, the number of nonzero entries
per column is small, while the number of columns of the matrix is much larger. Since
the threads need to be synchronized every time execution of the inner loop is terminated
(that is, once per column), a large overhead is again likely to arise in this approach.

The parallelization of the rowwise implementation (right of Fig. 3) using multi-
ple threads is much easier. As each iteration of the outer loop is independent, we can
parallelize this loop by introducing the directive:

#pragma omp parallel for private (indval, temp, j, k)
just before the outer loop. A certain amount of dot products are thus computed by each
thread and the threads only need to be synchronized once, on termination of the outer
loop. A dynamic scheduling of the threads provides a better computational load balancing
in this case as usually the nonzero entries of the matrix are distributed unevenly among
the rows.
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Table 1. Time (in sec.) of the parallel implementations for the USMV operation

Density Columnwise coordinate Rowwise Harwell-Boeing

1 Thread 2 Threads 4 Threads 1 Thread 2 Threads 4 Threads

0.01 0.031 1.961 0.485 0.029 0.021 0.012

0.1 0.292 1.676 0.608 0.207 0.162 0.097

1.0 2.855 2.389 1.390 1.976 1.560 0.917

3.3 Experimental Results

All the experiments in this subsection were obtained on a 4-way SMP UMA platform
consisting of 4 Intel Pentium Xeon@700MHz processors with 2.5 Gbytes of RAM and
a 1 Mbyte L3 cache. We employed the Omni 1.6 portable implementation of OpenMP
for SMPs (http://phase.hpcc.jp/Omni/).

We report the performance of the parallel implementations of the USMV operation
for a sparse matrix with m = n = 50, 000 rows/columns and a rate of nonzero elements
(density) ranging from 0.01% to 1%. The sparse matrices are generated so that the
elements are randomly distributed among the rows/columns of the matrix resulting in
a similar number of nonzero elements per row/column. The number of (floating-point
arithmetic) operations of the sparse matrix-vector product is proportional to the square
of the number of nonzero entries of the matrix, and therefore the computational cost
of this problem can be considered as moderate. In other words, one should not expect
large speed-ups unless the matrix becomes “less sparse”. However, sparse matrices with
a density rate larger than 1% are rare.

Table 1 shows the execution times of the sequential code (columns labeled as 1 thread)
and the parallel columnwise/rowwise codes using 2 and 4 threads. Comparing only the
sequential codes, the columnwise implementation obtains larger execution times. This is
usual as current architectures, where the memory is structured hierarchically in multiple
levels, benefit more from an operation such as the dot product than saxpys. One could
then argue against the use of the columnwise code. However, notice that once the storage
scheme of the matrix is fixed as rowwise, the computation of y ← y + α · AT · x, an
operation probably as frequent as the non-transposed matrix-vector product, requires
accessing the elements of the matrix as in the columnwise code.

Now, let us consider the parallel performances of both variants. The columnwise
implementation offers poor parallel results until the density of nonzero elements reaches
1%. This behaviour was already predicted in the previous subsection: As the threads need
to be synchronized once per column, when the number of nonzero entries per column
is small compared with the number of columns of the matrix, the overhead imposed by
the synchronization degrades the performance of the algorithm. Only when the density
rate is 1% the parallel implementation outperforms the serial code, with speed-ups of
1.19 and 2.05 for 2 and 4 threads, respectively.

For the rowwise implementation, the experimental results show maintained speed-
ups around 1.3 and 2.4 using 2 and 4 threads, respectively, for all density rates. Fur-
ther experimentation is needed here to evaluate whether a different implementation of
OpenMP, or even a different platform, would offer better performances.
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4 Case Study II: FFT

4.1 Operation

The Fast Fourier Transform (FFT) plays an important role in many scientific and en-
gineering applications arising, e.g., in computational physics, digital signal processing,
image processing, and weather simulation and forecast.

We analyze hereafter the parallelization of the FFT routines in GSL. The case when
the number of processors is a power of two has been extensively analyzed, and we employ
here the version in [5]. The FFT algorithms can be generalized for the case when neither
the number of processors nor the problem size, n, are a power of two. However, in general,
this introduces a non-negligible communication overhead and results in a considerable
load imbalance. We follow the parallel mixed-radix FFT algorithm presented in [2],
which is a variant of Temperton’s FFT [6]. The algorithm presents a low communication
overhead, has good load balance properties, is independent of the number of processors,
and poses no restrictions on the number of processors nor the size of the input vector.

We start by introducing some preliminary notation needed for the description of the
FFT algorithm [2]:

– Rows and columns of matrices are indexed starting from 0.
– Element (j, k) of matrix A is stated to as | A | (j, k).
– The Kronecker product of matrices A and B is denoted as A ⊗ B = (aijB).
– The permutation matrix P p

q of order pq is defined as

| P p
q | (j, k) =

{
1 if j = rp + s and k = sq + r,

0 otherwise.

– The diagonal matrix Dp
q of order pq is defined as

| Dp
q | (j, k) =

{
wsm if j = k = sq + m,

0 otherwise,

where w = exp(2πı/pq), ı =
√
−1.

– Im states for the square identity matrix of order m.

By definition, the Discrete Fourier Transform (DFT) of z = (z0, ..., zn−1)T ∈ Cn

is given by

xj =
n−1∑
k=0

zk exp(2πjkı/n), 0 ≤ j ≤ n, x ∈ Cn. (4.1)

Alternatively,

x = Wnz, Wn(j, k) = wjk , w = exp(2πι/n). (4.2)

Here, Wn is known as the DFT matrix of order n. The idea behind the FFT algorithm
is to factorize Wn so that the multiplication by Wn is broken up into O(n log n) mul-
tiplications involving smaller matrices (each one of a small constant size). Temperton
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presented in [6] several variants of the FFT algorithm by rearranging the terms as differ-
ent factorized multiplications of the form Wnz. In particular, for n = f1f2 · · · fk−1fk,

Wn = Tk Tk−1 · · ·T2 T1 P1 P2 · · ·Pk−1 Pk, (4.3)

with
Ti = (Imi ⊗ Wfi ⊗ Ili) (Imi ⊗ Dfi

li
), Pi = (Imi ⊗ P li

fi
),

li = 1, li+1 = fili, mi = n/li+1, and 1 ≤ i ≤ k. Notice that all permutation matrices
in (4.3) are shifted to the right. From this formulation we arrive at the following sequential
algorithm for the FFT, with complexity O(n

∑
fi):

Factorize(n, k); // Compute f[0], ..., f[k-1]
for (i = k-1; i >= 0; i--)

z = P[i] * z;
for (i = 0; i < k; i++)

z = T[i] * z; // m[i]*l[i] sub-DFTs of size n
// have to be solved

While the first loop computes a permutation of the input array, the parallelization effort
is focused in the second loop.

4.2 Parallel Implementation Using MPI

The parallelization of the above algorithm has been also presented in [2] and we de-
scribe it with the code below. The algorithm is based on a particular layout of the
data to reduce the communication overhead with a proper load balance. At the be-
ginning of each iteration, processor pj receives just the data needed for the com-
putation during this iteration, according to a Rolled Break Cyclic distribution
(to be described later; see fig. 4). Only fi communication steps among processors
pj − 1 and pj + 1 are involved. After the computation of the local subproblems, the
Reverse Distributed Rolled Break Cyclic routine reallocates the data ac-
cording to a pure cyclic layout.

Factorize(n, k); // Compute f[0], ..., f[k-1]
Distribute_Cyclic(); // The permutation of the

// input array is distributed
// following a cyclic distribution

l = 1; // l = l[i]; m = m[i]
for (i = 0; i < k; i++) {

m = n / (f[i] * l);

Distribute_Rolled_Break_Cyclic(l, m, f);
// m[i] * l[i]/p sub-DFTs of size
// f[i] have been distributed on
// each processor

for (j = 0; j < m * l /p; j++) {
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v[j] = D * v[j]; // v[j] is the local vector
// corresponding to sub-DFT j
// D is the diagonal matrix of order
// f[i]l. Submatrices of D of order
// f[i]f[i] are involved in each
// product

v[j] = Wf * v[j]; // Wf is the DFT matrix of order f
}
Reverse_Distributed_Rolled_Break_Cyclic(l, m, f);
l = l * f[i];

}

A total number of lm sub-DFTs of size f must be solved in iteration i. The perfect load
balance of the work is found when the lm sub-DFTs can be evenly distributed among the
actual number of processors. The Rolled Break Cyclic distribution groups them
into m blocks of size l among the processors. Each block has a representative processor,
procorig, from which the allocation of data starts in the block. A cyclic assignment is
then performed. After l data elements have been allocated, the cyclic distribution breaks
and continues again starting from procorig. The balanced load of work is attained
since procorig receives �l/p� + 1 sub-DFTs and the remaining processors receive
�l/p� sub-DFTs. Figure 4 depicts a Rolled Break Cyclic distribution of n = 30
elements on p = 4 processors. The number of blocks is m = 2, and the number of
sub-DFTs, per block, l = 5, is divided among the processors. In block m = 0 processor
p0 is procorg and is assigned 2 sub-DFTs, with the first one composed by the elements
{x0, x5, x10} and the second one consisting of {x4, x5, x14}. The remaining processors
receive 1 sub-DFT in this block. In block m = 1 procorig is processor p3.

Fig. 4. A Rolled Break Distribution of n = 30 elements on p = 4 processors. l = 5, f = 3 and
m = 2

4.3 Experimental Results

The experiments presented in this subsection were performed on a PC Cluster consisting
of a 32 Intel Pentium Xeon running at 2.4 GHz, with 1 GByte of RAM memory each,
and connected through a Myrinet switch. We have used the MPI implementation GMMPI

1.6.3. Vectors with complex entries randomly distributed were generated as input signals
for the algorithm. Two instance problem sizes are considered in the experiments, n =
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510, 510 and n = 1, 048, 576. The first one is not a power of two. An interesting
feature is shown in Fig. 5, where the variation of the communication cost for the FFT
algorithm is reported. For both problem sizes, the communication volume remains almost
constant when the number of processors is increased, that is, the total time invested in
communications is not incremented as more processors are added. Table 2 shows the
execution times for the FFT algorithm. Although the first instance size is not a power of
two, the curves show a similar behaviour for both problem dimensions: execution times
decrease as more processors are added to the experiment. The load balance achieved
by the Rolled Break Cyclic distribution is strongly dependent on the factors fi

selected so that better performances can be expected if the factorizations are adapted
to the problem size and the number of processors but the computational effort may be
prohibitive.

Fig. 5. Variation of the communication cost of the FFT algorithm

Table 2. Time (in sec.) of the parallel implementations for the FFT operation

Number of processors

Problem Size 1 2 4 8 16 32

510,510 9.80 8.45 5.27 3.40 2.66 2.16

1,048,576 16.30 14.21 8.95 5.99 4.56 3.67

5 Concluding Remarks

We have described our efforts towards an efficient and portable parallelization of the GSL
library using OpenMP and MPI. Experimental results on an SMP and a multicomputer
report the performance of several parallel codes for the computation of two classical,
simple operations arising in linear algebra and discrete mathematics: the sparse matrix-
vector product and the FFT.

In particular, we have experienced that parallelizing the codes for the computation
of the sparse matrix-vector product is simple, but the performance depends not only
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on the algorithm but also on the matrix storage scheme, sparsity pattern, and density
rate. Although the scalability of shared-memory architectures is intrinsically limited,
experience taught us that in a parallelization of the sparse matrix-vector product on
a multicomputer, the communication time plays an important role, becoming a major
bottleneck.

We have also observed that the parallelization of the FFT general algorithm is quite
elaborate. Although many parallel algorithms have been implemented on dozens of par-
allel platforms, most of them use internal code optimizations to run efficiently both se-
quentially and in parallel. Our own FFT codes should then make use of similar optimiza-
tion techniques to be competitive at the cost of loosing portability. Better performances
are expected in shared-memory architectures, where the communication overhead can
be avoided, but the load imbalance inherent to the distribution of the sub-DFTs in the
parallel algorithm seems difficult to avoid.
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