Skip to main content

A Direct Orthogonal Sparse Static Methodology for a Finite Continuation Hybrid LP Solver

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

  • 1118 Accesses

Abstract

A finite continuation method for solving linear programs (LPs) has been recently put forward by K. Madsen and H. B. Nielsen which, to improve its performance, can be thought of as a Phase-I for a non-simplex active-set method (also known as basis-deficiency-allowing simplex variation); this avoids having to start the simplex method from a highly degenerate square basis. An efficient sparse implementation of this combined hybrid approach to solve LPs requires the use of the same sparse data structure in both phases, and a way to proceed in Phase-II when a non-square working matrix is obtained after Phase-I.

In this paper a direct sparse orthogonalization methodology based on Givens rotations and a static sparsity data structure is proposed for both phases, with a Linpack-like downdating without resorting to hyperbolic rotations. Its sparse implementation (recently put forward by us) is of reduced-gradient type, regularization is not used in Phase-II, and occasional refactorizations can take advantage of row orderings and parallelizability issues to decrease the computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björck, Å., Duff, I.S.: A direct method for the solution of sparse linear least squares problems. Linear Algebra Appl. 34, 43–67 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Edlund, O.: A software package for sparse orthogonal factorization and updating. ACM Trans. Math. Software 28(4), 448–482 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fletcher, R., Powell, M.J.D.: On themodification of LDLT factorizations. Math. Comp. 29, 1067–1087 (1974)

    MathSciNet  Google Scholar 

  4. Alan George, J., Heath, M.T.: Solution of sparse linear least squares problems using Givens rotations. Linear Algebra Appl. 34, 69–83 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alan George, J., Liu, J.W.-H.: An object-oriented approach to the design of a user interface for a sparse matrix package. SIAM J. Matrix Anal. Applics. 20(4), 953–969 (1999)

    Article  MATH  Google Scholar 

  6. Guerrero-García, P., Santos-Palomo, Á.: Solving a sequence of sparse compatible systems. Technical report MA-02-03, Department of Applied Mathematics, University of Málaga (November 2002) (Submitted for publication)

    Google Scholar 

  7. Guerrero-García, P., Santos-Palomo, Á.: A sparse orthogonal factorization technique for certain stiff systems of linear ODEs. In: Marín, J., Koncar, V. (eds.) Industrial Simulation Conference 2004 Proceedings, June 2004, pp. 17–19 (2004)

    Google Scholar 

  8. Madsen, K., Nielsen, H.B., Pinar, M.Ç.: A new finite continuation algorithm for linear programming. SIAM J. Optim. 6(3), 600–616 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Maros, I.: Computational Techniques of the Simplex Method. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  10. Matstoms, P.: Sparse linear least squares problems in optimization. Comput. Optim. Applics. 7(1), 89–110 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Megiddo, N.: On finding primal- and dual-optimal bases. ORSA J. Computing 3(1), 63–65 (1991)

    MATH  MathSciNet  Google Scholar 

  12. Murty, K.G.: Linear Programming. John Wiley and Sons, Chichester (1983)

    MATH  Google Scholar 

  13. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann (1988)

    Google Scholar 

  14. Nielsen, H.B.: AAFAC: A package of FORTRAN 77 subprograms for solving A T Ax = c. Tech. report, Institute for Numerical Analysis, Technical University of Denmark, Lyngby, Denmark (March 1990)

    Google Scholar 

  15. Nielsen, H.B.: Computing a minimizer of a piecewise quadratic. Tech. report, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark (September 1998)

    Google Scholar 

  16. Nielsen, H.B.: Algorithms for linear optimization, 2nd edition. Tech. report, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark (February 1999)

    Google Scholar 

  17. Pan, P.-Q.: A basis-deficiency-allowing variation of the simplexmethod for linear programming. Computers Math. Applic. 36(3), 33–53 (1998)

    Article  MATH  Google Scholar 

  18. Santos-Palomo, Á., Guerrero-García, P.: A non-simplex active-setmethod for linear programs in standard form. Stud. Inform. Control 14(2) (June 2005)

    Google Scholar 

  19. Santos-Palomo, Á., Guerrero-García, P.: Updating and downdating an upper trapezoidal sparse orthogonal factorization. Accepted for publication in IMA J. Numer. Anal.

    Google Scholar 

  20. Saunders, M.A.: Large-scale linear programming using theCholesky factorization. Tech. report CS-TR-72-252, Department of Computer Science, Stanford University, Stanford, CA (January 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerrero-García, P., Santos-Palomo, Á. (2006). A Direct Orthogonal Sparse Static Methodology for a Finite Continuation Hybrid LP Solver. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_72

Download citation

  • DOI: https://doi.org/10.1007/11558958_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics