Skip to main content

Connecting Many-Sorted Structures and Theories Through Adjoint Functions

  • Conference paper
Frontiers of Combining Systems (FroCoS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3717))

Included in the following conference series:

  • 427 Accesses

Abstract

In a previous paper, we have introduced a general approach for connecting two many-sorted theories through connection functions that behave like homomorphisms on the shared signature, and have shown that, under appropriate algebraic conditions, decidability of the validity of universal formulae in the component theories transfers to their connection. This work generalizes decidability transfer results for so-called ε-connections of modal logics. However, in this general algebraic setting, only the most basic type of ε-connections could be handled. In the present paper, we overcome this restriction by looking at pairs of connection functions that are adjoint pairs for partial orders defined in the component theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Ghilardi, S.: Connecting many-sorted theories. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 278–294. Springer, Heidelberg (2005), http://lat.inf.tu-dresden.de/research/reports.html

    Chapter  Google Scholar 

  2. Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word problem that generalizes fusion decidability results in modal logics. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 183–197. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Baader, F., Lutz, C., Sturm, H., Wolter, F.: Fusions of description logics and abstract description systems. J. Artificial Intelligence Research 16, 1–58 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baader, F., Tinelli, C.: A new approach for combining decision procedures for the word problem, and its connection to the Nelson-Oppen combination method. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249. Springer, Heidelberg (1997)

    Google Scholar 

  5. Baader, F., Tinelli, C.: Deciding the word problem in the union of equational theories. Information and Computation 178(2), 346–390 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang, C.-C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  7. Domenjoud, E., Klay, F., Ringeissen, C.: Combination techniques for non-disjoint equational theories. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814. Springer, Heidelberg (1994)

    Google Scholar 

  8. Fiorentini, C., Ghilardi, S.: Combining word problems through rewriting in categories with products. Theoretical Computer Science 294, 103–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper & Row, New York (1986)

    MATH  Google Scholar 

  10. Ghilardi, S., Meloni, G.C.: Modal logics with n-ary connectives. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36(3), 193–215 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. J. Automated Reasoning 33(3–4), 221–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ghilardi, S., Zawadowski, M.: Sheaves, Games and Model Completions. Trends in Logic, vol. 14. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  13. Grätzer, G.: General lattice theory, 2nd edn. Birkhäuser Verlag, Basel (1998)

    MATH  Google Scholar 

  14. Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics. J. Symbolic Logic 56(4), 1469–1485 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: \(\mathcal{E}\)-connections of abstract description systems. Artificial Intelligence 156, 1–73 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lambek, J.: The mathematics of sentence structure. The American Mathematical Monthly 65, 154–170 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nelson, G.: Combining satisfiability procedures by equality-sharing. In: Automated Theorem Proving: After 25 Years. Contemporary Mathematics, vol. 29, pp. 201–211. American Mathematical Society, Providence (1984)

    Google Scholar 

  18. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  19. Nipkow, T.: Combining matching algorithms: The regular case. J. Symbolic Computation 12, 633–653 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pigozzi, D.: The join of equational theories. Colloquium Mathematicum 30(1), 15–25 (1974)

    MATH  MathSciNet  Google Scholar 

  21. Spaan, E.: Complexity of Modal Logics. PhD thesis, Department of Mathematics and Computer Science, University of Amsterdam, The Netherlands (1993)

    Google Scholar 

  22. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wolter, F.: Fusions of modal logics revisited. In: Proc. Advances in Modal Logic. CSLI, Stanford (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baader, F., Ghilardi, S. (2005). Connecting Many-Sorted Structures and Theories Through Adjoint Functions. In: Gramlich, B. (eds) Frontiers of Combining Systems. FroCoS 2005. Lecture Notes in Computer Science(), vol 3717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559306_2

Download citation

  • DOI: https://doi.org/10.1007/11559306_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29051-3

  • Online ISBN: 978-3-540-31730-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics