Skip to main content

On the Individuality of the Iris Biometric

  • Conference paper
Image Analysis and Recognition (ICIAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3656))

Included in the following conference series:

  • 1364 Accesses

Abstract

Biometric authentication has been considered a model for quantitatively establishing the discriminative power of biometric data. The dichotomy model classifies two biometric samples as coming either from the same person or from two different people. This paper reviews features, distance measures, and classifiers used in iris authentication. For feature extraction we compare simple binary and multi-level 2D wavelet features. For distance measures we examine scalar distances such as Hamming and Euclidean, feature vector and histogram distances. Finally, for the classifiers we compare Bayes decision rule, nearest neighbor, artificial neural network, and support vector machines. Of the eleven different combinations tested, the best one uses multi-level 2D wavelet features, the histogram distance, and a support vector machine classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical inde-pendence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  2. Cha, S.-H.: Use of Distance Measures in Handwriting Analysis. PhD dissertation, SUNY at buffalo, CSE (March 2001)

    Google Scholar 

  3. Srihari, S.N., Cha, S.-H., Arora, H., Lee, S.: Individuality of Handwriting. Journal of Forensic Sciences 47(4), 856–872 (2002)

    Google Scholar 

  4. Pankanti, S., Prabhakar, S., Jain, A.K.: On the Individuality of Fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1010–1025 (2002)

    Article  Google Scholar 

  5. Stoney, D., Thornton, J.: A Critical Analysis of Quantitative Fingerprint Individuality Models. Journal of Forensic Sciences 31(4), 1187–1216 (1986)

    Google Scholar 

  6. Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: Guide to Biomet-rics. Springer Professional Computing, (2003) ISBN 0-387-40089-3

    Google Scholar 

  7. Cha, S., Srihari, S.N.: Writer Identification: Statistical Analysis and Dichotomizer. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 123–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Kam, M., Fielding, B., Conn, R.: Writer Identification by Professional Document Ex-aminers. Jouranl of Forensic Sciences, vol 42, 778–786 (1997)

    Google Scholar 

  9. Cha, S., Srihari, S.N.: Multiple Feature Integration for Writer Verification. In: Pro-ceedings of 7th IWFHR2000, Amsterdam, Netherlands, p 333–342 (September 2000) ISBN 90-76942-01-3

    Google Scholar 

  10. Daugman, J.G.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  11. Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12) (2003)

    Google Scholar 

  12. Kee, G., Byun, Y., Lee, K., Lee, Y.: Improved Techniques for an Iris Recognition System with High Performance. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, p. 177. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Mallat, S.G.: A theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Recognition and Machine Intelligence 11(4), 674–693 (1989)

    Article  MATH  Google Scholar 

  14. Choi, S., Yoon, S., Cha, S.H., Tappert, C.C.: Use of Histogram Distances in Iris Au-thentication. In: Proceedings of International Conference on Machine Learning; Models, Technologies and Applications, Las Vegas, June 21-24 (2004)

    Google Scholar 

  15. Cha, S., Srihari, S.N.: On Measuring the Distance between Histograms. Pattern Recognition 35(6), 1355–1370 (2002)

    Article  MATH  Google Scholar 

  16. Cha, S.: Fast Image Template and Dictionary Matching Algorithms. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS, vol. 1351, pp. 370–377. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Inc., Chichester (2000)

    Google Scholar 

  18. Cherkassky, V., Friedman, J.H., Wechsler, H.: From Statistics to Neural Networks. In: Theory and Pattern Recognition Applications, NATO ASI ed., Springer, Heidelberg (1994)

    Google Scholar 

  19. Osuna, E.E., Freund, R., Girosi, F.: Support Vector Machines: Training and Applications. MIT Artificial Intelligence Laboratory and Center for Biological and Computational Learning Department of Brain and Cognitive Sciences. A.I. Memo No 1602, C.B.C.L. Paper No 144 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoon, S., Choi, SS., Cha, SH., Lee, Y., Tappert, C.C. (2005). On the Individuality of the Iris Biometric. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_135

Download citation

  • DOI: https://doi.org/10.1007/11559573_135

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29069-8

  • Online ISBN: 978-3-540-31938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics