Skip to main content

3D Geometry Reconstruction from a Stereoscopic Video Sequence

  • Conference paper
Image Analysis and Recognition (ICIAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3656))

Included in the following conference series:

  • 1037 Accesses

Abstract

The aim of this work is to propose a method for recovering the 3D geometry of a video sequence taken from a pair of stereo cameras. The cameras are rigidly situated in a fixed position and there are some objects which are moving in front of them. Our method estimates the displacements of objects and the 3D structure of the scene. We establish a temporal constraint that relates the computation of the optical flow and the estimation of disparity maps. We use an energy minimisation approach that yields a system of partial differential equations (PDE) which is solved by means of a gradient descent technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Deriche, R., Sánchez, J., Weickert, J.: Dense disparity map estimation respecting image derivatives: a PDE and scale-space based approach. Journal of Visual Communication and Image Representation 13, 3–21 (2002); Also published as Inria Research Report no 3874

    Article  Google Scholar 

  2. Alvarez, L., Weickert, J., Sánchez, J.: Reliable Estimation of Dense Optical Flow Fields with Large Displacements. International Journal of Computer Vision 39(1), 41–56 (2000); An extended version maybe be found at Technical Report no2 del Instituto Universitario de Ciencias y Tecnologías Cibernéticas

    Article  MATH  Google Scholar 

  3. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  4. Faugeras, O., Luong, Q., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Kanade, T.: A Video-Rate Stereo Machine for 3D Reconstruction. In: Proc. of International Workshop on Stereoscopic 3D Display Technologies and Applications 1995 (1995)

    Google Scholar 

  7. Nagel, H.H., Enkelmann, W.: An Investigation of Smoothness Constraints for the Estimation of Displacements Vector Fields from Image Sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)

    Article  Google Scholar 

  8. Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 429–439 (1990)

    Article  Google Scholar 

  9. Zhang, L., Curless, B., Seitz, S.M.: Spacetime Stereo: Shape Recovery for Dynamic Scenes. In: Proceedings of IEEE Computer Society, Conference on Computer Vision and Pattern Recognition (CVPR), Madison, WI, June 2003, pp. 367–374 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salgado, A., Sánchez, J. (2005). 3D Geometry Reconstruction from a Stereoscopic Video Sequence. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_75

Download citation

  • DOI: https://doi.org/10.1007/11559573_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29069-8

  • Online ISBN: 978-3-540-31938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics