Skip to main content

A Morphological Edge Detector for Gray-Level Image Thresholding

  • Conference paper
Image Analysis and Recognition (ICIAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3656))

Included in the following conference series:

  • 1074 Accesses

Abstract

A morphological edge detector for robust real time image segmentation is proposed in this paper. Different from traditional thresholding methods that determine the threshold based on image gray level distribution, our method derives the threshold from object boundary point gray values and the boundary points are detected in the image using the proposed morphological edge detector. Firstly, the morphological edge detector is applied to compute the image morphological gradients. Then from the resultant image morphological gradient histogram, the object boundary points can be selected, which have higher gradient values than those of points within the object and background. The threshold is finally determined from the object boundary point gray values. Thus noise points inside the object and background are avoided in threshold computation. Experimental results on currency image segmentation for real time printing quality inspection are rather encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  2. Rosenfeld, A., Torre, P.: De la: Histogram Concavity Analysis As an Aid in Threshold Selection. IEEE Trans. Syst. Man Cybern. 13, 231–235 (1983)

    Google Scholar 

  3. Guo, R., Pandit, S.M.: Automatic Threshold Selection Based on Histogram Modes and a Discriminant Criterion. Mach. Vision Appl. 10, 331–338 (1998)

    Article  Google Scholar 

  4. Otsu, N.: A Threshold Selection Method From Gray Level Histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  5. Jawahar, C.V., Biswas, R.A.K.: Investigations on Fuzzy Thresholding Based on Fuzzy Clustering. Pattern Recognition 30, 1605–1613 (1997)

    Article  MATH  Google Scholar 

  6. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-level Picture Thresholding Using the Entropy of the Histogram. In: CVGIP: Graph. Models Image Process., vol. 29, pp. 273–285 (1985)

    Google Scholar 

  7. Pal, N.R.: On Minimum Cross-entropy Thresholding. Pattern Recognition 29, 575–580 (1996)

    Article  Google Scholar 

  8. Tsai, W.H.: Moment-preserving Thresholding: A New Approach. CVGIP: Graph. Models Image Process., 29, 373–393 (1985)

    Google Scholar 

  9. Venkatesh, S., Rosin, P.L.: Dynamic Threshold Determination by Local and Global Edge Evaluation. CVGIP: Graph. Models Image Process., 57, 146–160 (1995)

    Google Scholar 

  10. Beghdadi, A., Negrate, A.L., Lesegno, P.V.: De: Entropic Thresholding Using a Block Source Model. Graph. Models Image Process., 57, 197–205 (1995)

    Google Scholar 

  11. Lie, W.N.: An Efficient Threshold-evaluation Algorithm for Image Segmentation Based on Spatial Gray Level Cooccurrences. Signal Process. 33, 121–126 (1993)

    Article  Google Scholar 

  12. Bernsen, J.: Dynamic Thresholding of Gray Level Images. In: Proc. Intl. Conf. Patt. Recog (ICPR 1986), pp. 1251–1255 (1986)

    Google Scholar 

  13. Kamel, M., Zhao, A.: Extraction of Binary Character/Graphics Images From Grayscale Document Images. CVGIP: Graph. Models Image Process., 55, 203–217 (1993)

    Google Scholar 

  14. Le, S.U., Chung, S.Y., Park, R.H.: A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation. CVGIP: Graph. Models Image Process., 52, 171–190 (1990)

    Google Scholar 

  15. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.: A Survey of Thresholding Techniques. Comput. Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  16. Glasbey, C.A.: An Analysis of Histogram-based Thresholding Algorithms. CVGIP: Graph. Models Image Process., 55, 532–537 (1993)

    Google Scholar 

  17. Sezgin, M., Sankur, B.: Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation. J. Electronic Imaging 13, 146–165 (2004)

    Article  Google Scholar 

  18. Chen, B., He, L.: Fuzzy Template Matching for Printing Character Inspection. WSEAS Trans. Circuits and Sys. 3, 575–580 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, B., He, L., Liu, P. (2005). A Morphological Edge Detector for Gray-Level Image Thresholding. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_81

Download citation

  • DOI: https://doi.org/10.1007/11559573_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29069-8

  • Online ISBN: 978-3-540-31938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics