Abstract
In the present paper we explain the basic ideas of Robust Perron Cluster Analysis (PCCA+) and exemplify the different application areas of this new and powerful method. Recently, Deuflhard and Weber [5] proposed PCCA+ as a new cluster algorithm in conformation dynamics for computational drug design. This method was originally designed for the identification of almost invariant subsets of states in a Markov chain. As an advantage, PCCA+ provides an indicator for the number of clusters. It turned out that PCCA+ can also be applied to other problems in life science. We are going to show how it serves for the clustering of gene expression data stemming from breast cancer research [20]. We also demonstrate that PCCA+ can be used for the clustering of HIV protease inhibitors corresponding to their activity. In theoretical chemistry, PCCA+ is applied to the analysis of metastable ensembles in monomolecular kinetics, which is a tool for RNA folding [21].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, K., Selbig, J.: Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype. PNAS 99, 8271–8276 (2002)
Bolhuis, P.G., Dellago, C., Geissler, P.L., Chandler, D.: Transition path sampling: throwing ropes over mountains in the dark. Journal of Physics: Condensed Matter 12, A147–A152 (2000)
Deuflhard, P., Huisinga, W., Fischer, A., Schütte, C.: Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl. 315, 39–59 (2000)
Deuflhard, P., Schütte, C.: Molecular conformation dynamics and computational drug design. In: Hill, J.M., Moore, R. (eds.) Applied Mathematics Entering the 21th Century. ICIAM 2003, Sydney, Australia (2004)
Deuflhard, P., Weber, M.: Robust Perron Cluster Analysis in Conformation Dynamics. In: Dellnitz, M., Kirkland, S., Neumann, M., Schütte, C. (eds.) Lin. Alg. App. – Special Issue on Matrices and Mathematical Biology. 398C, pp. 161–184. Elsevier Journals, Amsterdam (2005)
TheMathWorks Inc. Germany. Matlab(R) 6.5.0 (1994–2005)
Gleich, D., Zhukov, L.: Soft clustering with projections: PCA, ICA, and Laplacian. Technical report, California Institute of Technology, Computer Graphics Research (2004)
Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Halgren, T.A.: J. Am. Chem. Soc. 114, 7827–7843 (1992)
Halgren, T.A.: Merck molecular force field. J. Comp. Chem. 17(I-V), 490–641 (1996)
Meila, M., Shi, J.: A random walks view of spectral segmentation. AI and Statistics, AISTATS (2001)
Meyer, H.: Die Implementierung und Analyse von HuMfree–einer gitterfreien Methode zur Konformationsanalyse von Wirkstoffmolekülen. Master’s thesis, Free University Berlin (February 2005)
Schmidt-Ehrenberg, J., Baum, D., Hege, H.-C.: Visualizing dynamic molecular conformations. In: IEEE Visualization 2002, pp. 235–242. IEEE Computer Society Press, Los Alamitos (2002)
Schütte, C.: Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin (1999)
Schütte, C., Fischer, A., Huisinga, W., Deuflhard, P.: A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys., Special Issue on Computational Biophysics 151, 146–168 (1999)
Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Stalling, D., Westerhoff, M., Hege, H.-C.: Amira - a highly interactive system for visual data analysis. In: Johnson, C.R., Hansen, C.D. (eds.) Visualization Handbook. Academic Press, London (2004)
Verma, D., Meila, M.: A Comparison of Spectral Clustering Algorithms. Technical Report 03-05-01, University of Washington (2003)
Weber, M.: Meshless Methods in Conformation Dynamics. PhD thesis, Free University Berlin (2005) (in preparation)
Weber, M., Rungsarityotin, W., Schliep, A.: Perron cluster analysis and its connection to graph partitioning for noisy data. Technical Report ZR-04-39, Zuse Institute Berlin (2004)
Wolfinger, M.T., Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler, P.F.: Efficient computation of RNA folding dynamics. J. Phys. A: Math. Gen. 37, 4731–4741 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Weber, M., Kube, S. (2005). Robust Perron Cluster Analysis for Various Applications in Computational Life Science. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds) Computational Life Sciences. CompLife 2005. Lecture Notes in Computer Science(), vol 3695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560500_6
Download citation
DOI: https://doi.org/10.1007/11560500_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29104-6
Online ISBN: 978-3-540-31726-5
eBook Packages: Computer ScienceComputer Science (R0)